Development and validation of a nomogram to predict the depressive symptoms among older adults: A national survey in China

列线图 中国 抑郁症状 萧条(经济学) 心理学 老年学 医学 精神科 地理 内科学 焦虑 考古 经济 宏观经济学
作者
Jian Rong,Ningning Zhang,Yu Wang,Pan Cheng,Dahai Zhao
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:361: 367-375 被引量:2
标识
DOI:10.1016/j.jad.2024.06.036
摘要

Depressive symptoms (DS) have become a global public health problem. However, a risk prediction model for DS in the elderly population has not been established. The purpose of this study was to develop and validate a predictive nomogram to screen for DS in the elderly population. A cross-sectional data of 3396 participants aged 60 and over were obtained from the China Health and Retirement Longitudinal Study 2018 (CHARLS). Participants were divided into the development and validation set. Predictive factors were selected through a single-factor analysis, and then a predictive model nomogram was established. The discrimination, calibration, and clinical validity were evaluated using the receiver operating characteristic (ROC) curves, Hosmer-Lemeshow tests, and decision curve analyses (DCA). A total of 2379 and 1017 participants were included in the development and validation set, respectively. The analysis found that gender, residence, dyslipidemia, self-rated health, and ADL disability were risk factors for DS in older adults, and were included in the final model. This nomogram showed an acceptable predictive performance as evaluated by the area under the ROC curve with values of 0.684 (95 % confidence interval (CI): 0.663–0.706) and 0.687 (95 % CI: 0.655–0.719) in the development and validation set, respectively. The calibration curve indicated that the model was accurate, and DCA demonstrated a good clinical application value. Five factors were selected to establish a nomogram for predicting DS in older adults. The nomogram has a good evaluation performance and can be used as a reliable tool to predict DS among older adults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Lucas应助柚子采纳,获得10
刚刚
MADKAI发布了新的文献求助10
刚刚
1秒前
爆米花应助咕咕咕采纳,获得10
1秒前
zxy发布了新的文献求助10
1秒前
2秒前
醉人的仔发布了新的文献求助10
2秒前
daguan完成签到,获得积分10
2秒前
桐桐应助nikai采纳,获得10
2秒前
3秒前
4秒前
123完成签到,获得积分10
4秒前
善良香岚发布了新的文献求助10
4秒前
5秒前
5秒前
444完成签到,获得积分10
5秒前
任一发布了新的文献求助30
5秒前
莉莉发布了新的文献求助10
6秒前
Zoe发布了新的文献求助10
6秒前
Hover完成签到,获得积分10
6秒前
自然的茉莉完成签到,获得积分10
7秒前
7秒前
Mandy完成签到,获得积分10
7秒前
8秒前
脑洞疼应助qaq采纳,获得10
8秒前
世界尽头发布了新的文献求助10
8秒前
小二郎应助科研民工采纳,获得10
8秒前
9秒前
无奈满天发布了新的文献求助10
9秒前
10秒前
MADKAI发布了新的文献求助10
10秒前
10秒前
贪玩丸子完成签到,获得积分10
10秒前
神勇的雅香应助liutaili采纳,获得10
11秒前
KSGGS完成签到,获得积分10
11秒前
YANG关注了科研通微信公众号
11秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759