亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and validation of a nomogram to predict the depressive symptoms among older adults: A national survey in China

列线图 中国 抑郁症状 萧条(经济学) 心理学 老年学 医学 精神科 地理 内科学 焦虑 考古 经济 宏观经济学
作者
Jian Rong,Ningning Zhang,Yu Wang,Pan Cheng,Dahai Zhao
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:361: 367-375 被引量:11
标识
DOI:10.1016/j.jad.2024.06.036
摘要

Depressive symptoms (DS) have become a global public health problem. However, a risk prediction model for DS in the elderly population has not been established. The purpose of this study was to develop and validate a predictive nomogram to screen for DS in the elderly population. A cross-sectional data of 3396 participants aged 60 and over were obtained from the China Health and Retirement Longitudinal Study 2018 (CHARLS). Participants were divided into the development and validation set. Predictive factors were selected through a single-factor analysis, and then a predictive model nomogram was established. The discrimination, calibration, and clinical validity were evaluated using the receiver operating characteristic (ROC) curves, Hosmer-Lemeshow tests, and decision curve analyses (DCA). A total of 2379 and 1017 participants were included in the development and validation set, respectively. The analysis found that gender, residence, dyslipidemia, self-rated health, and ADL disability were risk factors for DS in older adults, and were included in the final model. This nomogram showed an acceptable predictive performance as evaluated by the area under the ROC curve with values of 0.684 (95 % confidence interval (CI): 0.663–0.706) and 0.687 (95 % CI: 0.655–0.719) in the development and validation set, respectively. The calibration curve indicated that the model was accurate, and DCA demonstrated a good clinical application value. Five factors were selected to establish a nomogram for predicting DS in older adults. The nomogram has a good evaluation performance and can be used as a reliable tool to predict DS among older adults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助阡陌殇殇采纳,获得10
1秒前
4秒前
7秒前
8秒前
Orange应助happy贼王采纳,获得10
11秒前
RR发布了新的文献求助10
12秒前
HUOZHUANGCHAO完成签到,获得积分10
14秒前
15秒前
Achu发布了新的文献求助10
20秒前
小葛完成签到,获得积分10
22秒前
22秒前
秋殇浅寞完成签到,获得积分10
24秒前
秋殇浅寞发布了新的文献求助30
27秒前
Owen应助月白lala采纳,获得10
29秒前
FashionBoy应助Juniorrr采纳,获得20
31秒前
31秒前
拓跋半雪发布了新的文献求助30
35秒前
happy贼王发布了新的文献求助10
35秒前
lsl完成签到 ,获得积分10
39秒前
40秒前
42秒前
45秒前
小丿丫丿丫完成签到 ,获得积分10
45秒前
happy贼王发布了新的文献求助10
48秒前
49秒前
斯文败类应助RR采纳,获得10
51秒前
不说再见发布了新的文献求助10
53秒前
happy贼王完成签到,获得积分10
53秒前
领导范儿应助嘚嘚采纳,获得10
55秒前
自由的中蓝完成签到 ,获得积分10
57秒前
1分钟前
1分钟前
拓跋半雪完成签到,获得积分10
1分钟前
yfq1018发布了新的文献求助10
1分钟前
zz发布了新的文献求助10
1分钟前
李梓航完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
kkk发布了新的文献求助10
1分钟前
yfq1018完成签到,获得积分20
1分钟前
遗忘完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253515
求助须知:如何正确求助?哪些是违规求助? 4416821
关于积分的说明 13750562
捐赠科研通 4289289
什么是DOI,文献DOI怎么找? 2353359
邀请新用户注册赠送积分活动 1350077
关于科研通互助平台的介绍 1309966