Development and validation of a nomogram to predict the depressive symptoms among older adults: A national survey in China

列线图 中国 抑郁症状 萧条(经济学) 心理学 老年学 医学 精神科 地理 内科学 焦虑 宏观经济学 经济 考古
作者
Jian Rong,Ningning Zhang,Yu Wang,Pan Cheng,Dahai Zhao
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:361: 367-375 被引量:13
标识
DOI:10.1016/j.jad.2024.06.036
摘要

Depressive symptoms (DS) have become a global public health problem. However, a risk prediction model for DS in the elderly population has not been established. The purpose of this study was to develop and validate a predictive nomogram to screen for DS in the elderly population. A cross-sectional data of 3396 participants aged 60 and over were obtained from the China Health and Retirement Longitudinal Study 2018 (CHARLS). Participants were divided into the development and validation set. Predictive factors were selected through a single-factor analysis, and then a predictive model nomogram was established. The discrimination, calibration, and clinical validity were evaluated using the receiver operating characteristic (ROC) curves, Hosmer-Lemeshow tests, and decision curve analyses (DCA). A total of 2379 and 1017 participants were included in the development and validation set, respectively. The analysis found that gender, residence, dyslipidemia, self-rated health, and ADL disability were risk factors for DS in older adults, and were included in the final model. This nomogram showed an acceptable predictive performance as evaluated by the area under the ROC curve with values of 0.684 (95 % confidence interval (CI): 0.663–0.706) and 0.687 (95 % CI: 0.655–0.719) in the development and validation set, respectively. The calibration curve indicated that the model was accurate, and DCA demonstrated a good clinical application value. Five factors were selected to establish a nomogram for predicting DS in older adults. The nomogram has a good evaluation performance and can be used as a reliable tool to predict DS among older adults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助纯真忆安采纳,获得10
刚刚
刚刚
杨知意完成签到,获得积分10
刚刚
赘婿应助wuhao1采纳,获得10
1秒前
852应助wxz1998采纳,获得10
1秒前
悲凉的大船完成签到,获得积分10
1秒前
达奚多思发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
戒骄戒躁发布了新的文献求助10
2秒前
Laurie完成签到,获得积分10
2秒前
含糊的玲完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
薯片完成签到,获得积分10
4秒前
123116011411完成签到,获得积分20
4秒前
4秒前
动听以晴发布了新的文献求助10
4秒前
慢慢发布了新的文献求助10
4秒前
SciGPT应助惠葶采纳,获得10
5秒前
5秒前
6秒前
tcf应助清雅采纳,获得10
6秒前
迷之XX完成签到,获得积分10
6秒前
科研通AI2S应助叶长安采纳,获得10
6秒前
6秒前
7秒前
lily发布了新的文献求助10
7秒前
jack1511发布了新的文献求助10
7秒前
2024011023发布了新的文献求助10
7秒前
KFjiatang完成签到,获得积分10
7秒前
mfy0068完成签到,获得积分10
7秒前
墨西哥猪肉卷完成签到,获得积分10
7秒前
旷意发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
含糊的玲发布了新的文献求助10
7秒前
斯文败类应助小管采纳,获得10
8秒前
默许冰心完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285