Two-dimensional nanomaterials such as reduced graphene oxide (rGO) have captured significant attention in the realm of field-effect transistor (FET) sensors due to their inherent high sensitivity and cost-effective manufacturing. Despite their attraction, a comprehensive understanding of rGO-solution interfaces (specifically, electrochemical interfacial properties influenced by linker molecules and surface chemistry) remains challenging, given the limited capability of analytical tools to directly measure intricate solution interface properties. In this study, we introduce an analytical tool designed to directly measure the surface charge density of the rGO-solution interface leveraging the remote floating-gate FET (RFGFET) platform. Our methodology involves characterizing the electrochemical properties of rGO, which are influenced by adhesion layers between SiO