Adaptive self-calibrated soft sensor for reliable nutrient measurement in rivers: Two-stage stacked autoencoder with densely connected fusion network

自编码 融合 阶段(地层学) 传感器融合 软传感器 营养物 计算机科学 环境科学 人工智能 模式识别(心理学) 遥感 生物 人工神经网络 生态学 地质学 语言学 过程(计算) 操作系统 哲学 古生物学
作者
Abdulrahman H. Ba-Alawi,Hanaa Aamer,Mohammed A. Al‐masni,ChangKyoo Yoo
出处
期刊:Journal of water process engineering [Elsevier]
卷期号:63: 105494-105494 被引量:7
标识
DOI:10.1016/j.jwpe.2024.105494
摘要

A soft sensor effectively estimates concentrations of total nitrogen (TN) and total phosphorus (TP) in rivers by utilizing easily measurable variables. However, in practical applications, the malfunction in sensors measuring easy-to-measure variables causes a deficiency in the developed TN and TP soft sensors. This study proposes an adaptive dual-stage soft sensor model (FAE-DNet) by stacking a fusion autoencoder (FAE) with a densely connected network (DNet) to estimate TN and TP reliably. In the first stage, a dataset consisting of ten biological-chemical variables with faulty measurements was self-calibrated using the FAE model. Subsequently, the second stage utilized the self-calibrated sensor data as input to the DNet to predict the TN and TP effectively. Furthermore, an explainable artificial intelligence (XAI) analysis was employed to elucidate the performance of the developed deep AI soft sensor model. The first-stage, FAE model, effectively handled faulty measurements, with low MSE values: 0.0913 for electrical conductivity (EC) and 0.1571 for dissolved oxygen (DO). In the second stage with DNet, nutrient prediction showed a superior R 2 value of 0.9557. However, the prediction showed a very poor performance with an R 2 value of 0.0749 when faulty data were utilized as input to the DNet without calibration using the FAE, highlighting the reliability of the two-stage FAE-DNet for precise nutrient estimation. Thus, the proposed FAE-DNet model provides advanced water quality monitoring through a self-calibrated soft sensor that accurately predicts TN and TP, making it a promising tool for monitoring waterbodies. • A dual-stage DL model based soft sensor for water nutrients monitoring was newly proposed. • First-stage based on FAE outperformed in reconstructing faulty measurements (MSE = 0.0913). • Second-stage based on DNet showed explainable and superior prediction of nutrients (R2 = 0.9557). • Residual error decreases by 89.44 % and 50.68 % in calibrated case compared to faulty case. • DNet based soft sensor outperformed, DNN, RF, and XGBoost models in nutrients prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wrx完成签到,获得积分20
1秒前
scott完成签到,获得积分10
1秒前
1秒前
Jasper应助北极星采纳,获得10
2秒前
XXXXX发布了新的文献求助20
2秒前
yiwan发布了新的文献求助10
2秒前
Lucas应助zy采纳,获得10
2秒前
wrx发布了新的文献求助10
3秒前
hony完成签到,获得积分10
3秒前
3秒前
obto发布了新的文献求助10
3秒前
哈哈哈哈发布了新的文献求助10
4秒前
狂跳的脉搏完成签到,获得积分10
4秒前
4秒前
4秒前
waiting完成签到,获得积分10
5秒前
5秒前
浮光完成签到,获得积分10
5秒前
5秒前
amy完成签到,获得积分10
5秒前
5秒前
mosisa完成签到,获得积分10
6秒前
和谐皮卡丘完成签到,获得积分20
6秒前
等待的剑身完成签到,获得积分10
6秒前
7秒前
7秒前
科研通AI6应助早川木槿采纳,获得10
7秒前
故里完成签到,获得积分10
7秒前
黑白芋头完成签到,获得积分10
7秒前
二尖瓣后叶完成签到,获得积分10
7秒前
弘一完成签到,获得积分10
7秒前
一米阳光发布了新的文献求助10
7秒前
签儿儿儿完成签到 ,获得积分10
7秒前
最好是完成签到,获得积分10
8秒前
8秒前
8秒前
汉桑波欸完成签到,获得积分10
8秒前
粗暴的达发布了新的文献求助10
9秒前
热心的薯片完成签到,获得积分10
9秒前
大好人完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005