Adaptive self-calibrated soft sensor for reliable nutrient measurement in rivers: Two-stage stacked autoencoder with densely connected fusion network

自编码 融合 阶段(地层学) 传感器融合 软传感器 营养物 计算机科学 环境科学 人工智能 模式识别(心理学) 遥感 生物 人工神经网络 生态学 地质学 语言学 过程(计算) 操作系统 哲学 古生物学
作者
Abdulrahman H. Ba-Alawi,Hanaa Aamer,Mohammed A. Al‐masni,ChangKyoo Yoo
出处
期刊:Journal of water process engineering [Elsevier]
卷期号:63: 105494-105494 被引量:7
标识
DOI:10.1016/j.jwpe.2024.105494
摘要

A soft sensor effectively estimates concentrations of total nitrogen (TN) and total phosphorus (TP) in rivers by utilizing easily measurable variables. However, in practical applications, the malfunction in sensors measuring easy-to-measure variables causes a deficiency in the developed TN and TP soft sensors. This study proposes an adaptive dual-stage soft sensor model (FAE-DNet) by stacking a fusion autoencoder (FAE) with a densely connected network (DNet) to estimate TN and TP reliably. In the first stage, a dataset consisting of ten biological-chemical variables with faulty measurements was self-calibrated using the FAE model. Subsequently, the second stage utilized the self-calibrated sensor data as input to the DNet to predict the TN and TP effectively. Furthermore, an explainable artificial intelligence (XAI) analysis was employed to elucidate the performance of the developed deep AI soft sensor model. The first-stage, FAE model, effectively handled faulty measurements, with low MSE values: 0.0913 for electrical conductivity (EC) and 0.1571 for dissolved oxygen (DO). In the second stage with DNet, nutrient prediction showed a superior R 2 value of 0.9557. However, the prediction showed a very poor performance with an R 2 value of 0.0749 when faulty data were utilized as input to the DNet without calibration using the FAE, highlighting the reliability of the two-stage FAE-DNet for precise nutrient estimation. Thus, the proposed FAE-DNet model provides advanced water quality monitoring through a self-calibrated soft sensor that accurately predicts TN and TP, making it a promising tool for monitoring waterbodies. • A dual-stage DL model based soft sensor for water nutrients monitoring was newly proposed. • First-stage based on FAE outperformed in reconstructing faulty measurements (MSE = 0.0913). • Second-stage based on DNet showed explainable and superior prediction of nutrients (R2 = 0.9557). • Residual error decreases by 89.44 % and 50.68 % in calibrated case compared to faulty case. • DNet based soft sensor outperformed, DNN, RF, and XGBoost models in nutrients prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Unicorn完成签到,获得积分10
刚刚
下酒菜发布了新的文献求助10
刚刚
夕荀完成签到,获得积分10
1秒前
2秒前
4秒前
桔子完成签到 ,获得积分10
7秒前
8秒前
李燕伟完成签到 ,获得积分10
8秒前
混子king完成签到 ,获得积分10
9秒前
MOON完成签到,获得积分20
9秒前
vungocbinh完成签到,获得积分10
10秒前
临平吴彦祖完成签到 ,获得积分10
11秒前
zjy147完成签到,获得积分10
13秒前
科研通AI6应助下酒菜采纳,获得10
13秒前
科目三应助超级的小熊猫采纳,获得10
14秒前
sherry完成签到 ,获得积分10
14秒前
611牛马完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
布蓝图完成签到 ,获得积分10
18秒前
一颗糖完成签到 ,获得积分10
19秒前
Roy完成签到,获得积分10
19秒前
华仔应助HM采纳,获得10
20秒前
寒冷子轩完成签到,获得积分20
22秒前
22秒前
22秒前
gglp完成签到 ,获得积分10
23秒前
勤恳万宝路完成签到,获得积分10
23秒前
成就绮琴完成签到 ,获得积分10
25秒前
27秒前
27秒前
祝你勇敢完成签到 ,获得积分0
28秒前
33秒前
33秒前
干净的新梅完成签到,获得积分20
34秒前
tyj完成签到,获得积分10
35秒前
chun完成签到 ,获得积分10
35秒前
于归故城完成签到,获得积分10
35秒前
量子星尘发布了新的文献求助10
36秒前
lily完成签到,获得积分10
37秒前
似水流华完成签到 ,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418652
求助须知:如何正确求助?哪些是违规求助? 4534317
关于积分的说明 14143457
捐赠科研通 4450523
什么是DOI,文献DOI怎么找? 2441286
邀请新用户注册赠送积分活动 1433019
关于科研通互助平台的介绍 1410438