Adaptive self-calibrated soft sensor for reliable nutrient measurement in rivers: Two-stage stacked autoencoder with densely connected fusion network

自编码 融合 阶段(地层学) 传感器融合 软传感器 营养物 计算机科学 环境科学 人工智能 模式识别(心理学) 遥感 生物 人工神经网络 生态学 地质学 语言学 过程(计算) 操作系统 哲学 古生物学
作者
Abdulrahman H. Ba-Alawi,Hanaa Aamer,Mohammed A. Al‐masni,ChangKyoo Yoo
出处
期刊:Journal of water process engineering [Elsevier]
卷期号:63: 105494-105494 被引量:7
标识
DOI:10.1016/j.jwpe.2024.105494
摘要

A soft sensor effectively estimates concentrations of total nitrogen (TN) and total phosphorus (TP) in rivers by utilizing easily measurable variables. However, in practical applications, the malfunction in sensors measuring easy-to-measure variables causes a deficiency in the developed TN and TP soft sensors. This study proposes an adaptive dual-stage soft sensor model (FAE-DNet) by stacking a fusion autoencoder (FAE) with a densely connected network (DNet) to estimate TN and TP reliably. In the first stage, a dataset consisting of ten biological-chemical variables with faulty measurements was self-calibrated using the FAE model. Subsequently, the second stage utilized the self-calibrated sensor data as input to the DNet to predict the TN and TP effectively. Furthermore, an explainable artificial intelligence (XAI) analysis was employed to elucidate the performance of the developed deep AI soft sensor model. The first-stage, FAE model, effectively handled faulty measurements, with low MSE values: 0.0913 for electrical conductivity (EC) and 0.1571 for dissolved oxygen (DO). In the second stage with DNet, nutrient prediction showed a superior R 2 value of 0.9557. However, the prediction showed a very poor performance with an R 2 value of 0.0749 when faulty data were utilized as input to the DNet without calibration using the FAE, highlighting the reliability of the two-stage FAE-DNet for precise nutrient estimation. Thus, the proposed FAE-DNet model provides advanced water quality monitoring through a self-calibrated soft sensor that accurately predicts TN and TP, making it a promising tool for monitoring waterbodies. • A dual-stage DL model based soft sensor for water nutrients monitoring was newly proposed. • First-stage based on FAE outperformed in reconstructing faulty measurements (MSE = 0.0913). • Second-stage based on DNet showed explainable and superior prediction of nutrients (R2 = 0.9557). • Residual error decreases by 89.44 % and 50.68 % in calibrated case compared to faulty case. • DNet based soft sensor outperformed, DNN, RF, and XGBoost models in nutrients prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
一见你就笑完成签到 ,获得积分10
1秒前
一见你就笑完成签到 ,获得积分10
1秒前
1秒前
桉荇完成签到,获得积分10
3秒前
乐乐应助萨尔莫斯采纳,获得10
5秒前
6秒前
科研狗完成签到 ,获得积分10
6秒前
正直海冬完成签到 ,获得积分20
8秒前
8秒前
如果多年后完成签到 ,获得积分10
8秒前
寻道图强应助绵绵球采纳,获得50
9秒前
niaho完成签到,获得积分10
10秒前
12秒前
北诺成尘完成签到,获得积分20
13秒前
Liu发布了新的文献求助30
13秒前
半眠日记发布了新的文献求助10
13秒前
zzzzz完成签到,获得积分10
15秒前
浓浓完成签到 ,获得积分10
16秒前
16秒前
nana发布了新的文献求助10
16秒前
MTXing完成签到,获得积分10
17秒前
19秒前
核桃发布了新的文献求助10
19秒前
半眠日记完成签到,获得积分10
19秒前
碧蓝的以云完成签到,获得积分10
21秒前
所所应助朽木采纳,获得10
22秒前
yl发布了新的文献求助10
22秒前
HC发布了新的文献求助10
22秒前
22秒前
23秒前
共享精神应助科研通管家采纳,获得20
25秒前
zhonglv7应助科研通管家采纳,获得10
25秒前
orixero应助科研通管家采纳,获得10
25秒前
王士钰应助科研通管家采纳,获得10
25秒前
桐桐应助科研通管家采纳,获得10
25秒前
田様应助科研通管家采纳,获得30
25秒前
沉默的盼夏应助大西瓜采纳,获得10
25秒前
FashionBoy应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
Jasper应助科研通管家采纳,获得10
25秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499416
求助须知:如何正确求助?哪些是违规求助? 4596291
关于积分的说明 14453558
捐赠科研通 4529471
什么是DOI,文献DOI怎么找? 2481975
邀请新用户注册赠送积分活动 1465944
关于科研通互助平台的介绍 1438822