Adaptive self-calibrated soft sensor for reliable nutrient measurement in rivers: Two-stage stacked autoencoder with densely connected fusion network

自编码 融合 阶段(地层学) 传感器融合 软传感器 营养物 计算机科学 环境科学 人工智能 模式识别(心理学) 遥感 生物 人工神经网络 生态学 地质学 语言学 过程(计算) 操作系统 哲学 古生物学
作者
Abdulrahman H. Ba-Alawi,Hanaa Aamer,Mohammed A. Al‐masni,ChangKyoo Yoo
出处
期刊:Journal of water process engineering [Elsevier BV]
卷期号:63: 105494-105494 被引量:7
标识
DOI:10.1016/j.jwpe.2024.105494
摘要

A soft sensor effectively estimates concentrations of total nitrogen (TN) and total phosphorus (TP) in rivers by utilizing easily measurable variables. However, in practical applications, the malfunction in sensors measuring easy-to-measure variables causes a deficiency in the developed TN and TP soft sensors. This study proposes an adaptive dual-stage soft sensor model (FAE-DNet) by stacking a fusion autoencoder (FAE) with a densely connected network (DNet) to estimate TN and TP reliably. In the first stage, a dataset consisting of ten biological-chemical variables with faulty measurements was self-calibrated using the FAE model. Subsequently, the second stage utilized the self-calibrated sensor data as input to the DNet to predict the TN and TP effectively. Furthermore, an explainable artificial intelligence (XAI) analysis was employed to elucidate the performance of the developed deep AI soft sensor model. The first-stage, FAE model, effectively handled faulty measurements, with low MSE values: 0.0913 for electrical conductivity (EC) and 0.1571 for dissolved oxygen (DO). In the second stage with DNet, nutrient prediction showed a superior R 2 value of 0.9557. However, the prediction showed a very poor performance with an R 2 value of 0.0749 when faulty data were utilized as input to the DNet without calibration using the FAE, highlighting the reliability of the two-stage FAE-DNet for precise nutrient estimation. Thus, the proposed FAE-DNet model provides advanced water quality monitoring through a self-calibrated soft sensor that accurately predicts TN and TP, making it a promising tool for monitoring waterbodies. • A dual-stage DL model based soft sensor for water nutrients monitoring was newly proposed. • First-stage based on FAE outperformed in reconstructing faulty measurements (MSE = 0.0913). • Second-stage based on DNet showed explainable and superior prediction of nutrients (R2 = 0.9557). • Residual error decreases by 89.44 % and 50.68 % in calibrated case compared to faulty case. • DNet based soft sensor outperformed, DNN, RF, and XGBoost models in nutrients prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Laughter发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
1秒前
自觉的巧蕊完成签到,获得积分20
2秒前
2秒前
2秒前
THEO完成签到,获得积分10
2秒前
Cochane发布了新的文献求助10
3秒前
子车代芙完成签到,获得积分10
3秒前
王金豪发布了新的文献求助10
3秒前
Suagy应助xdf采纳,获得10
3秒前
4秒前
Giao完成签到,获得积分10
4秒前
4秒前
梓榆发布了新的文献求助10
5秒前
5秒前
5秒前
风趣思山发布了新的文献求助10
6秒前
Lucas应助儒雅的忆翠采纳,获得10
6秒前
xxy完成签到,获得积分10
6秒前
英姑应助xxxxx采纳,获得10
7秒前
7秒前
ding应助fhr采纳,获得10
7秒前
SciGPT应助橙謧宣采纳,获得10
8秒前
ExtroGod完成签到,获得积分10
8秒前
9秒前
周末不上发条完成签到,获得积分10
9秒前
imzzy发布了新的文献求助10
9秒前
科研通AI6应助周大福采纳,获得10
9秒前
10秒前
11秒前
11秒前
11秒前
沉默钢笔发布了新的文献求助10
11秒前
12秒前
猪猪hero发布了新的文献求助10
12秒前
12秒前
Spring完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4575607
求助须知:如何正确求助?哪些是违规求助? 3995066
关于积分的说明 12367556
捐赠科研通 3668746
什么是DOI,文献DOI怎么找? 2021988
邀请新用户注册赠送积分活动 1056005
科研通“疑难数据库(出版商)”最低求助积分说明 943343