A two-stage leaf-stem separation model for maize with high planting density with Terrestrial, Backpack and UAV based Laser Scanning

背包 激光扫描 遥感 环境科学 阶段(地层学) 播种 激光器 光学 地质学 物理 生物 农学 工程类 结构工程 古生物学
作者
Lei Lei,Zhenhong Li,Hao Yang,Trevor Hoey,Jintao Wu,Bo Xu,Xiaodong Yang,Haikuan Feng,Guijun Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-19 被引量:1
标识
DOI:10.1109/tgrs.2024.3398135
摘要

The accurate and high-throughput extraction of phenotypic traits is of great significance for crop breeding and growth monitoring. The segmentation of structural components (e.g. leaves and stems) is a prerequisite for extracting phenotypic traits. In the past decade, there has been an increase in methods attempting to separate leaves and stems in point clouds. However, previous researches mainly focus on plants at the individual level due to the interlocked and overlapped nature of leaves and the bottleneck existing for field plants to extract phenotypic traits. To address this issue, a novel two-stage leaf-stem separation model encompassing the initial separation of leaves and stems and optimization is presented in this paper. The model is based on the different geometric features of leaves and stems of maize plants defined by neighborhood points, and a cylinder is used to find the neighborhood points by considering the elongated characteristic of maize stems. After that, another elongated cylinder (0.5m high and 0.02m diameter) is used to traverse the stem points to optimize the initially separated results. Maize plants with the planting density of 45,000 plants/ha in the filling stage (Exp. 2019) were used to train and test the model in the initial separation step (Experiment 1), showing that the separation accuracy could be up to 91.3%. It was concluded that a 0.11m high and 0.07m diameter cylinder was the optimal searching parameter for the initial separation, and 0.25m was the optimal threshold for optimization. We also tested the transferability of the model (Experiment 2) for maize plants with different planting densities (45,000, 67,500, 90,000, and 105,000 plants/ha), different growth stages (jointing, silking and filling), and point clouds collected using multiple platforms (Terrestrial Laser Scanning (TLS), LiDAR Backpack (LiBackpack), and Unmanned Aerial Vehicle-Light Detection and Ranging (UAV-LiDAR)), suggesting that the model performed well for all the datasets. In addition, the simulated datasets of maize with different planting densities were used to assess the model performance at the point level, showing the separation accuracy were 0.92, 0.91, 0.91, and 0.90 for maize with the planting densities of 45,000, 67,500, 90,000, and 105,000 plants/ha, respectively. The proposed model in this study is innovative, and it has promising prospects for the high-throughput extraction of the phenotypic traits in field maize plants and could facilitate genotype selection in crop breeding and three-dimensional (3D) plant modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
丘比特应助小欧君采纳,获得10
2秒前
lixiang完成签到,获得积分10
2秒前
3秒前
缓慢的可乐完成签到,获得积分10
4秒前
Akim应助Sicily采纳,获得10
5秒前
冰_完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
yingzg发布了新的文献求助10
6秒前
8秒前
jialin发布了新的文献求助10
9秒前
从容的鱼关注了科研通微信公众号
11秒前
英勇幻翠发布了新的文献求助10
13秒前
踏实沂完成签到 ,获得积分10
13秒前
英姑应助BBH采纳,获得10
13秒前
wzg666完成签到,获得积分10
16秒前
17秒前
炙热面包发布了新的文献求助10
17秒前
星星完成签到,获得积分10
19秒前
完美世界应助754采纳,获得10
20秒前
21秒前
12138完成签到,获得积分10
22秒前
22秒前
lu发布了新的文献求助10
24秒前
24秒前
123完成签到,获得积分10
25秒前
yqliu发布了新的文献求助10
26秒前
君故完成签到,获得积分10
27秒前
研友_ZzrNpZ发布了新的文献求助10
27秒前
28秒前
司马绮山发布了新的文献求助10
29秒前
29秒前
水云身发布了新的文献求助10
29秒前
嘟嘟嘟嘟完成签到,获得积分10
30秒前
32秒前
heroi完成签到,获得积分20
32秒前
33秒前
蓝色的纪念完成签到,获得积分10
33秒前
我是老大应助灿灿采纳,获得10
34秒前
小二郎应助浮生绘采纳,获得10
34秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742315
求助须知:如何正确求助?哪些是违规求助? 5407721
关于积分的说明 15344704
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625220
邀请新用户注册赠送积分活动 1574084
关于科研通互助平台的介绍 1531060