Dynamic spatial aware graph transformer for spatiotemporal traffic flow forecasting

计算机科学 变压器 图形 数据挖掘 理论计算机科学 工程类 电压 电气工程
作者
Zequan Li,Jinglin Zhou,Zhizhe Lin,Teng Zhou
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:297: 111946-111946 被引量:3
标识
DOI:10.1016/j.knosys.2024.111946
摘要

Accurately predicting traffic flow is a crucial upstream technique in intelligent transportation systems for future travel plans, the efficiency of urban transport, and the regulation of transport departments, etc. The mainstream spatiotemporal graph convolutional neural networks are usually based on prior knowledge to predefine adjacency matrix graphs for spatial dependencies of the road network. However, modeling spatial correlation statically limits these models to accurately predict traffic flow, since the spatial correlations of road segments change over time. To address these issues, we propose a spatiotemporal gated transformer network with a graph latent information learning structure, termed GL-STGTN, for spatiotemporal traffic flow forecasting. First, we propose a graph latent information learning structure to dynamically learn the spatial dependencies for road network conditions from global and local learning perspectives. Second, we design a spatiotemporal gated transformer network (STGTN) block, which consists of a localized geographically aware block to extract the local embedding of spatial correlations and a temporal-aware enlarged block to extract local temporal dependencies. The learned spatial and temporal feature embeddings are further aggregated in a spatial multi-head attention module and a temporal multi-head attention module, respectively. In the end, a spatiotemporal fusion layer fuses the spatial and temporal information from the stacked STGTN blocks. Experiments on two public real-world benchmark datasets show that our model outperforms six state-of-the-art models for multi-step traffic flow forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小杨完成签到,获得积分10
刚刚
sutharsons应助科研通管家采纳,获得30
1秒前
1秒前
Ava应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得30
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得30
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
Eric_Lee2000应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
1秒前
王子完成签到,获得积分10
2秒前
李繁蕊发布了新的文献求助10
3秒前
诚心的大碗应助明理念桃采纳,获得20
3秒前
4秒前
meng完成签到,获得积分10
4秒前
学者完成签到,获得积分10
4秒前
英俊的铭应助愉快盼曼采纳,获得10
5秒前
5秒前
小媛完成签到 ,获得积分10
6秒前
学术小白完成签到,获得积分20
6秒前
赘婿应助xiaomeng采纳,获得10
6秒前
Khr1stINK发布了新的文献求助10
6秒前
清新的苑博完成签到,获得积分10
6秒前
7秒前
果果瑞宁发布了新的文献求助10
8秒前
阿美发布了新的文献求助30
10秒前
10秒前
Jocelyn7完成签到,获得积分10
11秒前
wanyanjin应助yaoyao采纳,获得10
12秒前
Stephanie完成签到,获得积分20
12秒前
C_Cppp发布了新的文献求助10
12秒前
大抽是谁完成签到,获得积分10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808