Dynamic spatial aware graph transformer for spatiotemporal traffic flow forecasting

计算机科学 变压器 图形 数据挖掘 理论计算机科学 工程类 电压 电气工程
作者
Zequan Li,Jinglin Zhou,Zhizhe Lin,Teng Zhou
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:297: 111946-111946 被引量:11
标识
DOI:10.1016/j.knosys.2024.111946
摘要

Accurately predicting traffic flow is a crucial upstream technique in intelligent transportation systems for future travel plans, the efficiency of urban transport, and the regulation of transport departments, etc. The mainstream spatiotemporal graph convolutional neural networks are usually based on prior knowledge to predefine adjacency matrix graphs for spatial dependencies of the road network. However, modeling spatial correlation statically limits these models to accurately predict traffic flow, since the spatial correlations of road segments change over time. To address these issues, we propose a spatiotemporal gated transformer network with a graph latent information learning structure, termed GL-STGTN, for spatiotemporal traffic flow forecasting. First, we propose a graph latent information learning structure to dynamically learn the spatial dependencies for road network conditions from global and local learning perspectives. Second, we design a spatiotemporal gated transformer network (STGTN) block, which consists of a localized geographically aware block to extract the local embedding of spatial correlations and a temporal-aware enlarged block to extract local temporal dependencies. The learned spatial and temporal feature embeddings are further aggregated in a spatial multi-head attention module and a temporal multi-head attention module, respectively. In the end, a spatiotemporal fusion layer fuses the spatial and temporal information from the stacked STGTN blocks. Experiments on two public real-world benchmark datasets show that our model outperforms six state-of-the-art models for multi-step traffic flow forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
acuter发布了新的文献求助10
1秒前
1秒前
迷路的游侠完成签到,获得积分10
1秒前
2秒前
2秒前
赘婿应助XIAOMING采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
开朗艳一发布了新的文献求助10
2秒前
ddd应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
小马甲应助科研通管家采纳,获得10
3秒前
ED应助科研通管家采纳,获得10
3秒前
Billy应助科研通管家采纳,获得30
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
LBX发布了新的文献求助10
3秒前
LYSM应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
bym发布了新的文献求助10
3秒前
ddd应助科研通管家采纳,获得30
3秒前
赘婿应助科研通管家采纳,获得30
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
4秒前
彭于晏应助科研小达子采纳,获得10
4秒前
guons发布了新的文献求助10
4秒前
冷烟浮发布了新的文献求助10
4秒前
5秒前
6秒前
7秒前
7秒前
萝卜卷心菜完成签到 ,获得积分10
7秒前
小玉完成签到,获得积分10
7秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960721
求助须知:如何正确求助?哪些是违规求助? 3506928
关于积分的说明 11132948
捐赠科研通 3239182
什么是DOI,文献DOI怎么找? 1790081
邀请新用户注册赠送积分活动 872130
科研通“疑难数据库(出版商)”最低求助积分说明 803128