Probability ogives for trends in stock biomass and fishing mortality from landings time series

垂钓 库存(枪支) 渔业 环境科学 地理 生物 考古
作者
Rubén H. Roa-Ureta,Patrícia Amorim,Susana Segurado
出处
期刊:Fish and Fisheries [Wiley]
标识
DOI:10.1111/faf.12848
摘要

Abstract Most fisheries are conducted without any scientific knowledge about the size and productivity of the stocks that support them. This navigation in the dark in most fisheries is a major obstacle in making them sustainable sources of nutrition for people in general and income for fishers and other economic actors along supply chains. Fisheries that have not been assessed generally are data‐intermediate and data‐poor, the latter usually having annual time series of landings as the single piece of data available. A major effort in the last two decades has been directed toward developing ‘catch‐only’ stock assessment methods, although some of these methods have been tested and found deficient. Here we provide a novel approach to using annual landing time series as the single source of data to qualitatively judge the condition of un‐assessed stocks using frequentist cumulative probability ogives, both in terms of stock biomass and fishing mortality. A meta‐analysis of the FishSource database allowed us to infer statistical patterns from hundreds of assessed fisheries and thousands of annual landings, biomass, and fishing mortality observations. Four stock‐management types were considered separately in the analysis: short‐lived and others (mid‐ to long‐lived) stocks, controlled or not controlled by catch limits. Obtained cumulative probability ogives provide clear evaluations of stock biomass and fishing mortality trends in all four stock‐management types, leading to actionable information on probable current status and future trends. Using these probability ogives, we developed decision trees that lead to qualitative scores on the exploitation status of un‐assessed stocks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
wst发布了新的文献求助10
2秒前
赵琼珍发布了新的文献求助10
2秒前
贵哥发布了新的文献求助10
3秒前
4秒前
4秒前
曲终人散完成签到,获得积分10
4秒前
Archer发布了新的文献求助10
4秒前
唐泽雪穗应助大漠谣采纳,获得10
5秒前
搜集达人应助bee采纳,获得10
5秒前
5秒前
5秒前
贪玩阑香完成签到,获得积分10
6秒前
Xiaofeng完成签到,获得积分10
6秒前
6秒前
温暖的沛凝完成签到 ,获得积分10
7秒前
Zx_1993应助小鲤鱼本鱼采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
AliHamid发布了新的文献求助30
9秒前
又又发布了新的文献求助10
10秒前
10秒前
10秒前
通辽小判官完成签到,获得积分10
11秒前
外向万声完成签到,获得积分10
11秒前
quan发布了新的文献求助10
11秒前
Archer完成签到,获得积分20
12秒前
ling完成签到,获得积分10
12秒前
NexusExplorer应助赵琼珍采纳,获得10
12秒前
余淮完成签到,获得积分10
12秒前
wst完成签到,获得积分20
13秒前
Yao完成签到,获得积分10
13秒前
李萌萌完成签到 ,获得积分10
13秒前
14秒前
14秒前
Pauline完成签到 ,获得积分10
14秒前
难寻发布了新的文献求助10
14秒前
Akim应助石会发采纳,获得10
15秒前
酷酷慕山完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911665
求助须知:如何正确求助?哪些是违规求助? 4187116
关于积分的说明 13002794
捐赠科研通 3954954
什么是DOI,文献DOI怎么找? 2168516
邀请新用户注册赠送积分活动 1186997
关于科研通互助平台的介绍 1094256