Probability ogives for trends in stock biomass and fishing mortality from landings time series

垂钓 库存(枪支) 渔业 环境科学 地理 生物 考古
作者
Rubén H. Roa-Ureta,Patrícia Amorim,Susana Segurado
出处
期刊:Fish and Fisheries [Wiley]
标识
DOI:10.1111/faf.12848
摘要

Abstract Most fisheries are conducted without any scientific knowledge about the size and productivity of the stocks that support them. This navigation in the dark in most fisheries is a major obstacle in making them sustainable sources of nutrition for people in general and income for fishers and other economic actors along supply chains. Fisheries that have not been assessed generally are data‐intermediate and data‐poor, the latter usually having annual time series of landings as the single piece of data available. A major effort in the last two decades has been directed toward developing ‘catch‐only’ stock assessment methods, although some of these methods have been tested and found deficient. Here we provide a novel approach to using annual landing time series as the single source of data to qualitatively judge the condition of un‐assessed stocks using frequentist cumulative probability ogives, both in terms of stock biomass and fishing mortality. A meta‐analysis of the FishSource database allowed us to infer statistical patterns from hundreds of assessed fisheries and thousands of annual landings, biomass, and fishing mortality observations. Four stock‐management types were considered separately in the analysis: short‐lived and others (mid‐ to long‐lived) stocks, controlled or not controlled by catch limits. Obtained cumulative probability ogives provide clear evaluations of stock biomass and fishing mortality trends in all four stock‐management types, leading to actionable information on probable current status and future trends. Using these probability ogives, we developed decision trees that lead to qualitative scores on the exploitation status of un‐assessed stocks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助2424采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
1秒前
mylove应助科研通管家采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得30
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
Stella应助科研通管家采纳,获得10
1秒前
2秒前
mylove应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
Akim应助AAA采纳,获得10
2秒前
bc应助科研通管家采纳,获得20
2秒前
华仔应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得30
2秒前
Owen应助科研通管家采纳,获得10
2秒前
tum发布了新的文献求助10
2秒前
乐乐应助科研通管家采纳,获得30
2秒前
李健应助科研通管家采纳,获得10
2秒前
2秒前
linciko发布了新的文献求助10
2秒前
jack1511完成签到,获得积分10
2秒前
mylove应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
思源应助Iris采纳,获得10
3秒前
紫气东来应助科研通管家采纳,获得10
3秒前
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619177
求助须知:如何正确求助?哪些是违规求助? 4703952
关于积分的说明 14925213
捐赠科研通 4759305
什么是DOI,文献DOI怎么找? 2550439
邀请新用户注册赠送积分活动 1513156
关于科研通互助平台的介绍 1474401