Probability ogives for trends in stock biomass and fishing mortality from landings time series

垂钓 库存(枪支) 渔业 环境科学 地理 生物 考古
作者
Rubén H. Roa-Ureta,Patrícia Amorim,Susana Segurado
出处
期刊:Fish and Fisheries [Wiley]
标识
DOI:10.1111/faf.12848
摘要

Abstract Most fisheries are conducted without any scientific knowledge about the size and productivity of the stocks that support them. This navigation in the dark in most fisheries is a major obstacle in making them sustainable sources of nutrition for people in general and income for fishers and other economic actors along supply chains. Fisheries that have not been assessed generally are data‐intermediate and data‐poor, the latter usually having annual time series of landings as the single piece of data available. A major effort in the last two decades has been directed toward developing ‘catch‐only’ stock assessment methods, although some of these methods have been tested and found deficient. Here we provide a novel approach to using annual landing time series as the single source of data to qualitatively judge the condition of un‐assessed stocks using frequentist cumulative probability ogives, both in terms of stock biomass and fishing mortality. A meta‐analysis of the FishSource database allowed us to infer statistical patterns from hundreds of assessed fisheries and thousands of annual landings, biomass, and fishing mortality observations. Four stock‐management types were considered separately in the analysis: short‐lived and others (mid‐ to long‐lived) stocks, controlled or not controlled by catch limits. Obtained cumulative probability ogives provide clear evaluations of stock biomass and fishing mortality trends in all four stock‐management types, leading to actionable information on probable current status and future trends. Using these probability ogives, we developed decision trees that lead to qualitative scores on the exploitation status of un‐assessed stocks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
负责吃饭完成签到,获得积分10
刚刚
微渺完成签到,获得积分10
刚刚
睿力完成签到,获得积分10
刚刚
妮妮完成签到,获得积分10
1秒前
2224536完成签到,获得积分10
1秒前
天天快乐应助vivre223采纳,获得10
1秒前
shuiha发布了新的文献求助10
1秒前
1秒前
一一应助零度冰采纳,获得10
2秒前
鱼鱼鱼完成签到,获得积分10
2秒前
2秒前
2秒前
梅竹发布了新的文献求助10
3秒前
万能图书馆应助yiyi采纳,获得10
3秒前
lili完成签到,获得积分10
3秒前
4秒前
侏罗纪世界完成签到,获得积分10
4秒前
infe发布了新的文献求助10
4秒前
奕_yinb关注了科研通微信公众号
5秒前
LGS发布了新的文献求助10
5秒前
rrrrrrrrrrrrrrr完成签到,获得积分20
6秒前
smin发布了新的文献求助10
6秒前
6秒前
无花果应助往不随采纳,获得10
6秒前
7秒前
优雅含灵发布了新的文献求助10
7秒前
科研通AI6应助啊懂采纳,获得10
7秒前
8秒前
高亚楠发布了新的文献求助10
8秒前
xldongcn发布了新的文献求助10
9秒前
9秒前
9秒前
李健的粉丝团团长应助LGS采纳,获得10
10秒前
10秒前
11秒前
维奈克拉应助himsn采纳,获得10
11秒前
11秒前
11秒前
ling完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853