A Novel Electrical Equipment Status Diagnosis Method Based on Super-Resolution Reconstruction and Logical Reasoning

分辨率(逻辑) 计算机科学 人工智能 工程制图 工程类
作者
Peng Ping,Qida Yao,Wei Guo,Changrong Liao
出处
期刊:Sensors [MDPI AG]
卷期号:24 (13): 4259-4259
标识
DOI:10.3390/s24134259
摘要

The accurate detection of electrical equipment states and faults is crucial for the reliable operation of such equipment and for maintaining the health of the overall power system. The state of power equipment can be effectively monitored through deep learning-based visual inspection methods, which provide essential information for diagnosing and predicting equipment failures. However, there are significant challenges: on the one hand, electrical equipment typically operates in complex environments, thus resulting in captured images that contain environmental noise, which significantly reduces the accuracy of state recognition based on visual perception. This, in turn, affects the comprehensiveness of the power system’s situational awareness. On the other hand, visual perception is limited to obtaining the appearance characteristics of the equipment. The lack of logical reasoning makes it difficult for purely visual analysis to conduct a deeper analysis and diagnosis of the complex equipment state. Therefore, to address these two issues, we first designed an image super-resolution reconstruction method based on the Generative Adversarial Network (GAN) to filter environmental noise. Then, the pixel information is analyzed using a deep learning-based method to obtain the spatial feature of the equipment. Finally, by constructing the logic diagram for electrical equipment clusters, we propose an interpretable fault diagnosis method that integrates the spatial features and temporal states of the electrical equipment. To verify the effectiveness of the proposed algorithm, extensive experiments are conducted on six datasets. The results demonstrate that the proposed method can achieve high accuracy in diagnosing electrical equipment faults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xdj1990831473完成签到,获得积分10
4秒前
4秒前
深情安青应助OnMyWorldside采纳,获得10
6秒前
牛八先生完成签到,获得积分10
6秒前
斯文败类应助会飞的野马采纳,获得10
7秒前
Rian完成签到 ,获得积分10
7秒前
7秒前
一条迷人的咸鱼干完成签到,获得积分10
7秒前
占囧发布了新的文献求助10
9秒前
Syq完成签到,获得积分10
9秒前
9秒前
阿佳梨木发布了新的文献求助30
10秒前
Hello应助科研副本采纳,获得10
10秒前
12秒前
zho应助拾柒采纳,获得10
13秒前
夏风完成签到,获得积分10
13秒前
ccclau发布了新的文献求助10
13秒前
占囧完成签到,获得积分20
13秒前
Billy应助小龟别乱跑采纳,获得20
13秒前
啥也不会完成签到,获得积分10
15秒前
吃花生酱的猫关注了科研通微信公众号
16秒前
16秒前
ccccc完成签到 ,获得积分10
16秒前
16秒前
18秒前
ccclau完成签到,获得积分10
21秒前
cctv18应助小杨采纳,获得10
21秒前
23秒前
Orange应助疯少采纳,获得10
23秒前
25秒前
韦明凯完成签到,获得积分20
26秒前
一一应助why采纳,获得100
27秒前
anlikek发布了新的文献求助30
27秒前
sekidesu发布了新的文献求助10
28秒前
罗英完成签到,获得积分10
28秒前
29秒前
小蘑菇应助Mr采纳,获得10
31秒前
34秒前
舒适的方盒完成签到 ,获得积分10
34秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247606
求助须知:如何正确求助?哪些是违规求助? 2890926
关于积分的说明 8265247
捐赠科研通 2559191
什么是DOI,文献DOI怎么找? 1387904
科研通“疑难数据库(出版商)”最低求助积分说明 650658
邀请新用户注册赠送积分活动 627495