A Novel Electrical Equipment Status Diagnosis Method Based on Super-Resolution Reconstruction and Logical Reasoning

分辨率(逻辑) 计算机科学 人工智能 工程制图 工程类
作者
Peng Ping,Qida Yao,Wei Guo,Changrong Liao
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (13): 4259-4259
标识
DOI:10.3390/s24134259
摘要

The accurate detection of electrical equipment states and faults is crucial for the reliable operation of such equipment and for maintaining the health of the overall power system. The state of power equipment can be effectively monitored through deep learning-based visual inspection methods, which provide essential information for diagnosing and predicting equipment failures. However, there are significant challenges: on the one hand, electrical equipment typically operates in complex environments, thus resulting in captured images that contain environmental noise, which significantly reduces the accuracy of state recognition based on visual perception. This, in turn, affects the comprehensiveness of the power system’s situational awareness. On the other hand, visual perception is limited to obtaining the appearance characteristics of the equipment. The lack of logical reasoning makes it difficult for purely visual analysis to conduct a deeper analysis and diagnosis of the complex equipment state. Therefore, to address these two issues, we first designed an image super-resolution reconstruction method based on the Generative Adversarial Network (GAN) to filter environmental noise. Then, the pixel information is analyzed using a deep learning-based method to obtain the spatial feature of the equipment. Finally, by constructing the logic diagram for electrical equipment clusters, we propose an interpretable fault diagnosis method that integrates the spatial features and temporal states of the electrical equipment. To verify the effectiveness of the proposed algorithm, extensive experiments are conducted on six datasets. The results demonstrate that the proposed method can achieve high accuracy in diagnosing electrical equipment faults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Auoroa发布了新的文献求助10
刚刚
小厮完成签到,获得积分10
3秒前
10秒前
在水一方应助CC采纳,获得10
11秒前
14秒前
亮亮完成签到,获得积分10
15秒前
17秒前
17秒前
刘禹彤完成签到,获得积分10
18秒前
Mia发布了新的文献求助10
19秒前
19秒前
22秒前
22秒前
Tsing发布了新的文献求助10
22秒前
奋斗的孤风完成签到,获得积分10
23秒前
23秒前
24秒前
吃鱼完成签到 ,获得积分10
24秒前
LF-Scie完成签到,获得积分10
24秒前
小超超完成签到 ,获得积分10
26秒前
CA发布了新的文献求助10
26秒前
yewungs发布了新的文献求助30
27秒前
27秒前
打打应助Chelry采纳,获得10
27秒前
于友卉发布了新的文献求助10
28秒前
30秒前
乐乐应助小秋秋采纳,获得10
31秒前
切咖啡完成签到 ,获得积分20
33秒前
WMQkingofk发布了新的文献求助10
33秒前
科目三应助细腻老四采纳,获得10
33秒前
34秒前
37秒前
长情语蕊发布了新的文献求助10
39秒前
40秒前
coc完成签到,获得积分10
41秒前
makabaka发布了新的文献求助10
41秒前
41秒前
42秒前
Cu完成签到 ,获得积分10
42秒前
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991883
求助须知:如何正确求助?哪些是违规求助? 3533014
关于积分的说明 11260344
捐赠科研通 3272297
什么是DOI,文献DOI怎么找? 1805688
邀请新用户注册赠送积分活动 882609
科研通“疑难数据库(出版商)”最低求助积分说明 809425