Construction of an Early Risk Prediction Model for Type 2 Diabetic Peripheral Neuropathy Based on Random Forest

医学 周围神经病变 随机森林 逻辑回归 接收机工作特性 糖尿病神经病变 糖尿病 病历 回顾性队列研究 排名(信息检索) 内科学 机器学习 计算机科学 内分泌学
作者
Zhengang Wei,Xiaohua Wang,Liqin Lu,Li Su,Wenyan Long,Lin Zhang,Shaolin Shen
出处
期刊:Cin-computers Informatics Nursing [Lippincott Williams & Wilkins]
卷期号:42 (9): 665-674 被引量:2
标识
DOI:10.1097/cin.0000000000001157
摘要

Diabetic peripheral neuropathy is a major cause of disability and death in the later stages of diabetes. A retrospective chart review was performed using a hospital-based electronic medical record database to identify 1020 patients who met the criteria. The objective of this study was to explore and analyze the early risk factors for peripheral neuropathy in patients with type 2 diabetes, even in the absence of specific clinical symptoms or signs. Finally, the random forest algorithm was used to rank the influencing factors and construct a predictive model, and then the model performance was evaluated. Logistic regression analysis revealed that vitamin D plays a crucial protective role in preventing diabetic peripheral neuropathy. The top three risk factors with significant contributions to the model in the random forest algorithm eigenvalue ranking were glycosylated hemoglobin, disease duration, and vitamin D. The areas under the receiver operating characteristic curve of the model ware 0.90. The accuracy, precision, specificity, and sensitivity were 0.85, 0.83, 0.92, and 0.71, respectively. The predictive model, which is based on the random forest algorithm, is intended to support clinical decision-making by healthcare professionals and help them target timely interventions to key factors in early diabetic peripheral neuropathy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得10
刚刚
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
刚刚
共享精神应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得30
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
Ec_w应助科研通管家采纳,获得20
1秒前
2秒前
MYosotis完成签到,获得积分10
2秒前
123456发布了新的文献求助10
2秒前
科研通AI5应助友00000采纳,获得10
4秒前
栀晴应助liao采纳,获得10
5秒前
能干冰露发布了新的文献求助30
6秒前
6秒前
劲秉应助一头蠢驴采纳,获得10
6秒前
6秒前
深情安青应助雷德采纳,获得10
7秒前
小蘑菇应助灵巧尔云采纳,获得10
7秒前
情怀应助哼哼采纳,获得10
10秒前
爱丽丝发布了新的文献求助30
10秒前
11秒前
汉堡包应助Likej采纳,获得10
12秒前
12秒前
小马甲应助Cik采纳,获得10
13秒前
13秒前
顾矜应助Kra采纳,获得10
13秒前
科研通AI5应助海岢采纳,获得10
14秒前
来来来发布了新的文献求助10
14秒前
123发布了新的文献求助10
16秒前
RY发布了新的文献求助10
16秒前
17秒前
17秒前
LQL完成签到,获得积分10
17秒前
17秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732331
求助须知:如何正确求助?哪些是违规求助? 3276613
关于积分的说明 9997784
捐赠科研通 2992192
什么是DOI,文献DOI怎么找? 1642047
邀请新用户注册赠送积分活动 780144
科研通“疑难数据库(出版商)”最低求助积分说明 748701