已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Time-dependent hydrogen fuel cell vehicle routing problem with drones and variable drone speeds

无人机 变量(数学) 车辆路径问题 燃料电池 布线(电子设计自动化) 计算机科学 工程类 航空学 汽车工程 环境科学 航空航天工程 生物 数学 计算机网络 遗传学 化学工程 数学分析
作者
Xiaoxue Ren,Houming Fan,Mengzhi Ma,Hao Fan,Lijun Yue
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:193: 110330-110330 被引量:3
标识
DOI:10.1016/j.cie.2024.110330
摘要

This paper proposes a novel problem called the time-dependent hydrogen fuel cell vehicle routing problem with drones and variable drone speeds (TDHFCVRP-D-VDS). In this problem, a fleet of hydrogen fuel cell vehicles (HFCVs) are equipped with multiple unmanned aerial vehicles (UAVs) to perform delivery and pickup services within the customers' time windows. The UAV is capable of performing pickup operations after the delivery service, as long as it does not exceed its energy capacity. The HFCV can launch and retrieve the UAV multiple times as needed throughout the routing process. We establish a mixed integer programming model to simultaneously minimize the total cost and makespan, and verify its accuracy by Gurobi. To tackle larger-scale instances, we propose a non-dominated sorting genetic algorithm III with intelligent selection (NSGA-III-IS). The initial population is generated using four distinct approaches aimed at enhancing both diversity and quality. Considering the customers' time windows, we factor in the temporal-spatial distances between customers when generating the initial population. Our approach employs a two-phase algorithm for developing initial solutions. In the first phase, the algorithm focuses on generating UAV trips, while in the second phase, it creates joint delivery routes for both the HFCV and the UAV. To enhance the optimization process, we have developed four strategies for optimizing UAV speed. These strategies dynamically adjust the UAV's speed in response to the customers' time windows and the HFCVs' arrival times. Additionally, we have integrated an intelligent selection mechanism to optimize the execution probabilities of both general and problem-specific operators. The experimental results demonstrate the following: (1) The proposed NSGA-III-IS outperforms other variant algorithms and two benchmark algorithms; (2) UAVs significantly benefit from variable flight speeds, resulting in reduced costs and improved efficiency; (3) The HFCV with UAV joint delivery pattern is superior for reducing carbon emissions compared to other joint delivery patterns; (4) Longer customer time windows and optimized UAV speed strategies are effective in reducing the total cost, makespan, and total UAV hover waiting time; (5) Finally, a method that combines multi-attribute decision-making with principal component analysis is utilized to aid decision-makers in selecting satisfactory solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
犬来八荒发布了新的文献求助30
1秒前
一只AI艾发布了新的文献求助10
1秒前
2秒前
羽生结弦的馨馨完成签到,获得积分10
2秒前
chenchenchen发布了新的文献求助10
2秒前
wen发布了新的文献求助10
3秒前
芃芃完成签到 ,获得积分10
6秒前
bx应助天天开心ty采纳,获得30
6秒前
abab完成签到 ,获得积分10
7秒前
8秒前
莱恩完成签到 ,获得积分10
8秒前
wu发布了新的文献求助10
9秒前
9秒前
TY发布了新的文献求助10
9秒前
9秒前
10秒前
12秒前
孤独梦安发布了新的文献求助10
13秒前
MchemG应助han采纳,获得10
13秒前
13秒前
田様应助踏实雨采纳,获得20
13秒前
14秒前
NexusExplorer应助小cc采纳,获得30
14秒前
14秒前
FAN发布了新的文献求助10
14秒前
仲半邪发布了新的文献求助10
15秒前
丁一完成签到,获得积分10
16秒前
龙龙冲发布了新的文献求助10
16秒前
17秒前
18秒前
BareBear应助QQxing采纳,获得20
20秒前
所所应助龙龙冲采纳,获得10
21秒前
Akim应助linshi采纳,获得10
21秒前
FAN完成签到,获得积分10
23秒前
wu关闭了wu文献求助
23秒前
丘比特应助犬来八荒采纳,获得10
25秒前
小吕完成签到 ,获得积分10
27秒前
我爱背单词完成签到 ,获得积分10
27秒前
顺利完成签到,获得积分10
28秒前
LR发布了新的文献求助20
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401093
求助须知:如何正确求助?哪些是违规求助? 4520125
关于积分的说明 14078325
捐赠科研通 4432996
什么是DOI,文献DOI怎么找? 2433973
邀请新用户注册赠送积分活动 1426138
关于科研通互助平台的介绍 1404738