生物
蛋白质基因组学
可药性
癌症
计算生物学
蛋白质组学
克拉斯
UniProt公司
药物重新定位
癌症研究
生物信息学
突变
药品
遗传学
基因组
基因组学
药理学
基因
作者
Sara R. Savage,Xinpei Yi,Jonathan T. Lei,Bo Wen,Hongwei Zhao,Yuxing Liao,Eric J. Jaehnig,Lauren K. Somes,Paul Shafer,Tobie D. Lee,Zile Fu,Yongchao Dou,Zhiao Shi,Daming Gao,Valentina Hoyos,Qiang Gao,Bing Zhang
出处
期刊:Cell
[Elsevier]
日期:2024-06-24
卷期号:187 (16): 4389-4407.e15
被引量:5
标识
DOI:10.1016/j.cell.2024.05.039
摘要
Fewer than 200 proteins are targeted by cancer drugs approved by the Food and Drug Administration (FDA). We integrate Clinical Proteomic Tumor Analysis Consortium (CPTAC) proteogenomics data from 1,043 patients across 10 cancer types with additional public datasets to identify potential therapeutic targets. Pan-cancer analysis of 2,863 druggable proteins reveals a wide abundance range and identifies biological factors that affect mRNA-protein correlation. Integration of proteomic data from tumors and genetic screen data from cell lines identifies protein overexpression- or hyperactivation-driven druggable dependencies, enabling accurate predictions of effective drug targets. Proteogenomic identification of synthetic lethality provides a strategy to target tumor suppressor gene loss. Combining proteogenomic analysis and MHC binding prediction prioritizes mutant KRAS peptides as promising public neoantigens. Computational identification of shared tumor-associated antigens followed by experimental confirmation nominates peptides as immunotherapy targets. These analyses, summarized at https://targets.linkedomics.org, form a comprehensive landscape of protein and peptide targets for companion diagnostics, drug repurposing, and therapy development.
科研通智能强力驱动
Strongly Powered by AbleSci AI