亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection and Localization of Spine Disorders from Plain Radiography

X线平片 脊柱(分子生物学) 射线照相术 口腔正畸科 医学 放射科 生物 生物信息学
作者
İlkay Yıldız,Diana Yeritsyan,Edward K. Rodriguez,Jim S. Wu,Ara Nazarian,Ashkan Vaziri
标识
DOI:10.1007/s10278-024-01175-x
摘要

Spine disorders can cause severe functional limitations, including back pain, decreased pulmonary function, and increased mortality risk. Plain radiography is the first-line imaging modality to diagnose suspected spine disorders. Nevertheless, radiographical appearance is not always sufficient due to highly variable patient and imaging parameters, which can lead to misdiagnosis or delayed diagnosis. Employing an accurate automated detection model can alleviate the workload of clinical experts, thereby reducing human errors, facilitating earlier detection, and improving diagnostic accuracy. To this end, deep learning-based computer-aided diagnosis (CAD) tools have significantly outperformed the accuracy of traditional CAD software. Motivated by these observations, we proposed a deep learning-based approach for end-to-end detection and localization of spine disorders from plain radiographs. In doing so, we took the first steps in employing state-of-the-art transformer networks to differentiate images of multiple spine disorders from healthy counterparts and localize the identified disorders, focusing on vertebral compression fractures (VCF) and spondylolisthesis due to their high prevalence and potential severity. The VCF dataset comprised 337 images, with VCFs collected from 138 subjects and 624 normal images collected from 337 subjects. The spondylolisthesis dataset comprised 413 images, with spondylolisthesis collected from 336 subjects and 782 normal images collected from 413 subjects. Transformer-based models exhibited 0.97 Area Under the Receiver Operating Characteristic Curve (AUC) in VCF detection and 0.95 AUC in spondylolisthesis detection. Further, transformers demonstrated significant performance improvements against existing end-to-end approaches by 4–14% AUC (p-values < 10−13) for VCF detection and by 14–20% AUC (p-values < 10−9) for spondylolisthesis detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
雍雍完成签到 ,获得积分10
3秒前
W29完成签到 ,获得积分10
11秒前
W29完成签到 ,获得积分10
11秒前
香蕉觅云应助Lxk采纳,获得10
48秒前
orixero应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
有川洋一完成签到 ,获得积分10
1分钟前
略带一丝完成签到,获得积分10
1分钟前
1分钟前
liway完成签到 ,获得积分10
1分钟前
科研通AI5应助刀锋采纳,获得10
1分钟前
1分钟前
略带一丝发布了新的文献求助10
1分钟前
大七完成签到 ,获得积分10
1分钟前
Lxk发布了新的文献求助10
1分钟前
1分钟前
刀锋完成签到,获得积分10
1分钟前
天天快乐应助Lxk采纳,获得10
1分钟前
刀锋发布了新的文献求助10
1分钟前
1分钟前
狮子座发布了新的文献求助10
1分钟前
衬衫完成签到 ,获得积分10
2分钟前
TonyLee完成签到,获得积分10
2分钟前
2分钟前
dcm完成签到,获得积分10
2分钟前
清逸之风完成签到 ,获得积分10
2分钟前
Lxk发布了新的文献求助10
2分钟前
潇洒绿蕊完成签到,获得积分10
2分钟前
皮戾应助梅哈采纳,获得10
2分钟前
酱豆豆完成签到 ,获得积分10
2分钟前
吃了吃了完成签到,获得积分10
2分钟前
归海梦岚完成签到,获得积分0
2分钟前
JamesPei应助科研通管家采纳,获得10
3分钟前
CodeCraft应助科研通管家采纳,获得10
3分钟前
orixero应助科研通管家采纳,获得10
3分钟前
Hello应助Lxk采纳,获得10
3分钟前
3分钟前
久9完成签到 ,获得积分10
3分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736624
求助须知:如何正确求助?哪些是违规求助? 3280584
关于积分的说明 10020070
捐赠科研通 2997270
什么是DOI,文献DOI怎么找? 1644496
邀请新用户注册赠送积分活动 782041
科研通“疑难数据库(出版商)”最低求助积分说明 749648