已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Graph Anomaly Detection With Disentangled Prototypical Autoencoder for Phishing Scam Detection in Cryptocurrency Transactions

自编码 计算机科学 数字加密货币 图形 数据库事务 理论计算机科学 卷积神经网络 人工智能 深度学习 数据挖掘 机器学习 异常检测 模式识别(心理学) 计算机安全 数据库
作者
Junha Kang,Seok-Jun Buu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 91075-91088
标识
DOI:10.1109/access.2024.3419152
摘要

As the popularity of cryptocurrencies grows, the threat of phishing scams on trading networks is growing. Detecting unusual transactions within the complex structure of these transaction graphs and imbalanced data between Benign and Scams remains a very important task. In this paper, we present Disentangled Prototypical Graph Convolutional Autoencoder, which is optimized for detecting anomalies in cryptocurrency transactions. Our model redefines the approach to analyzing cryptocurrency transactions by treating them as edges and accounts as nodes within a graph neural network enhanced by autoencoders. The DP-GCAE model differentiates itself from existing models by implementing disentangled representation learning within its autoencoder framework. This innovative approach allows for a more nuanced capture of the complex interactions within Ethereum transaction graphs, significantly enhancing the ability of the model to discern subtle patterns often obscured in imbalanced datasets. Building upon this, the autoencoder employs a triplet network to effectively disentangle and reconstruct the graph. Reconstruction is used as input to Graph Convolutional Network to detect unusual patterns through prototyping. In experiments conducted on real Ethereum transaction data, our proposed DP-GCAE model showed remarkable performance improvements. Compared with existing graph convolution methods, the DP-GCAE model achieved a 37.7 percent point increase in F1 score, validating the effectiveness and importance of incorporating disentangled learning approaches in graph anomaly detection. These advances not only improve the F1-score of identifying phishing scams in cryptocurrency networks, but also provide a powerful framework that can be applied to a variety of graph-based anomaly detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木又完成签到 ,获得积分10
1秒前
不开心就吃糖完成签到 ,获得积分10
2秒前
嘻嘻完成签到 ,获得积分10
2秒前
kai chen完成签到 ,获得积分0
2秒前
清脆的飞丹完成签到,获得积分10
6秒前
xiaoya完成签到,获得积分20
7秒前
8秒前
ZT完成签到,获得积分20
8秒前
Spencer完成签到 ,获得积分10
9秒前
谨慎的友安完成签到 ,获得积分10
9秒前
文渊完成签到,获得积分0
11秒前
个性紫完成签到 ,获得积分10
11秒前
CipherSage应助蓝桉采纳,获得10
12秒前
wildeager完成签到,获得积分10
12秒前
Chaos完成签到 ,获得积分10
12秒前
曾经的电脑完成签到 ,获得积分10
13秒前
a553355发布了新的文献求助10
13秒前
13秒前
只如初完成签到 ,获得积分10
14秒前
唐tang完成签到,获得积分10
14秒前
努力的咩咩完成签到 ,获得积分10
14秒前
遇上就这样吧完成签到,获得积分0
16秒前
cheng完成签到,获得积分10
16秒前
余邴完成签到 ,获得积分10
17秒前
pterionGao完成签到 ,获得积分10
17秒前
HEHNJJ完成签到,获得积分10
18秒前
书中魂我自不理会完成签到 ,获得积分10
18秒前
白天科室黑奴and晚上实验室牛马完成签到 ,获得积分10
18秒前
白斯特发布了新的文献求助10
19秒前
毕个业完成签到 ,获得积分10
19秒前
Zhouzhou发布了新的文献求助20
20秒前
淡定井完成签到 ,获得积分10
20秒前
20秒前
大模型应助科研雪瑞采纳,获得10
21秒前
zyf完成签到,获得积分10
22秒前
AmbitionY完成签到,获得积分10
22秒前
xingxing完成签到 ,获得积分10
24秒前
慎二完成签到 ,获得积分10
24秒前
无限的寄真完成签到 ,获得积分10
25秒前
11111完成签到 ,获得积分10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959930
求助须知:如何正确求助?哪些是违规求助? 3506191
关于积分的说明 11128233
捐赠科研通 3238160
什么是DOI,文献DOI怎么找? 1789535
邀请新用户注册赠送积分活动 871810
科研通“疑难数据库(出版商)”最低求助积分说明 803024