Graph Anomaly Detection With Disentangled Prototypical Autoencoder for Phishing Scam Detection in Cryptocurrency Transactions

自编码 计算机科学 数字加密货币 图形 数据库事务 理论计算机科学 卷积神经网络 人工智能 深度学习 数据挖掘 机器学习 异常检测 模式识别(心理学) 计算机安全 数据库
作者
Junha Kang,Seok-Jun Buu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 91075-91088
标识
DOI:10.1109/access.2024.3419152
摘要

As the popularity of cryptocurrencies grows, the threat of phishing scams on trading networks is growing. Detecting unusual transactions within the complex structure of these transaction graphs and imbalanced data between Benign and Scams remains a very important task. In this paper, we present Disentangled Prototypical Graph Convolutional Autoencoder, which is optimized for detecting anomalies in cryptocurrency transactions. Our model redefines the approach to analyzing cryptocurrency transactions by treating them as edges and accounts as nodes within a graph neural network enhanced by autoencoders. The DP-GCAE model differentiates itself from existing models by implementing disentangled representation learning within its autoencoder framework. This innovative approach allows for a more nuanced capture of the complex interactions within Ethereum transaction graphs, significantly enhancing the ability of the model to discern subtle patterns often obscured in imbalanced datasets. Building upon this, the autoencoder employs a triplet network to effectively disentangle and reconstruct the graph. Reconstruction is used as input to Graph Convolutional Network to detect unusual patterns through prototyping. In experiments conducted on real Ethereum transaction data, our proposed DP-GCAE model showed remarkable performance improvements. Compared with existing graph convolution methods, the DP-GCAE model achieved a 37.7 percent point increase in F1 score, validating the effectiveness and importance of incorporating disentangled learning approaches in graph anomaly detection. These advances not only improve the F1-score of identifying phishing scams in cryptocurrency networks, but also provide a powerful framework that can be applied to a variety of graph-based anomaly detection tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Handsome__oov2完成签到 ,获得积分10
刚刚
深情妙菡发布了新的文献求助30
刚刚
英俊的铭应助qfk采纳,获得10
刚刚
lala完成签到,获得积分10
刚刚
1秒前
现代代桃发布了新的文献求助10
1秒前
2秒前
4秒前
完美的jia发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
戈多来了发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
Akazugi完成签到,获得积分10
7秒前
7秒前
甜美的芷完成签到,获得积分10
7秒前
7秒前
8秒前
Lucas应助俊逸的翅膀采纳,获得10
8秒前
8秒前
朝闻道发布了新的文献求助10
9秒前
大个应助刘浩采纳,获得10
10秒前
BowieHuang应助甜美的芷采纳,获得10
11秒前
einspringen发布了新的文献求助10
12秒前
安详岱周发布了新的文献求助10
12秒前
简一发布了新的文献求助10
12秒前
桐桐应助完美的jia采纳,获得10
12秒前
jmy1995发布了新的文献求助10
12秒前
黄萧雨完成签到,获得积分10
13秒前
鸣谦发布了新的文献求助20
13秒前
轻松凡英完成签到,获得积分10
14秒前
传奇3应助sfliufighting采纳,获得10
15秒前
尘迹完成签到,获得积分10
15秒前
17秒前
17秒前
sean完成签到 ,获得积分10
18秒前
19秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713487
求助须知:如何正确求助?哪些是违规求助? 5215699
关于积分的说明 15270963
捐赠科研通 4865238
什么是DOI,文献DOI怎么找? 2611937
邀请新用户注册赠送积分活动 1562134
关于科研通互助平台的介绍 1519378