Rolling bearing fault diagnosis in electric motors based on IDIG-GAN under small sample condition

方位(导航) 断层(地质) 样品(材料) 材料科学 电动机 汽车工程 机械工程 计算机科学 工程类 地质学 物理 人工智能 地震学 热力学
作者
Xiangjin Song,Zhicheng Liu,Zhaowei Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 106105-106105 被引量:1
标识
DOI:10.1088/1361-6501/ad5a2f
摘要

Abstract The bearing fault diagnosis based on deep learning algorithms requires a substantial amount of data. However, in practical industrial production, the diagnostic algorithms tend to work ineffectively due to the limitations of samples. Therefore, in this article, we propose an improved method of deep convolutional generative adversarial networks (DCGAN) with discriminator gradient gap regularization (IDIG-GAN), which can effectively solve the problems of unstable training and poor training performance under a small sample dataset. Firstly, the self-attention mechanism is integrated into the DCGAN to capture global information to enhance the generalization capability of the network. Moreover, gradient normalization is applied to the discriminator to address the problem of vanishing gradients in the network. Furthermore, gradient gap regularization is incorporated into the loss function to narrow the gap between the discriminator gradient norms, thereby improving network stability when dealing with small fault datasets. Through training with the improved IDIG-GAN, then the generated samples are used to expand the dataset and construct a fault diagnosis model. By verifying under two bearing datasets, the results demonstrate that the proposed method can generate high-quality samples and effectively enhance the diagnostic capability of the network when working with small datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
今后应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得20
刚刚
慕青应助科研通管家采纳,获得10
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得150
刚刚
Ava应助科研通管家采纳,获得10
刚刚
1秒前
Rondab应助科研通管家采纳,获得10
1秒前
Rondab应助科研通管家采纳,获得10
1秒前
Rondab应助科研通管家采纳,获得10
1秒前
Rondab应助科研通管家采纳,获得10
1秒前
Rondab应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
Singularity应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
gy发布了新的文献求助10
2秒前
李健的小迷弟应助麒麟采纳,获得10
3秒前
qyang发布了新的文献求助10
3秒前
3秒前
逢写必中发布了新的文献求助10
4秒前
4秒前
4秒前
彬琪发布了新的文献求助10
8秒前
8秒前
DongWei95完成签到,获得积分10
9秒前
pureivy22完成签到 ,获得积分10
9秒前
11秒前
Hipchengi完成签到,获得积分10
11秒前
12秒前
13秒前
14秒前
鸣笛应助晴烟ZYM采纳,获得50
15秒前
麦子发布了新的文献求助10
16秒前
bmn完成签到,获得积分10
17秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992868
求助须知:如何正确求助?哪些是违规求助? 3533665
关于积分的说明 11263418
捐赠科研通 3273432
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882931
科研通“疑难数据库(出版商)”最低求助积分说明 809629