CholecTriplet2021: A benchmark challenge for surgical action triplet recognition

计算机科学 水准点(测量) 人工智能 动作(物理) 动作识别 模式识别(心理学) 计算机视觉 地图学 量子力学 物理 地理 班级(哲学)
作者
Chinedu Innocent Nwoye,Deepak Alapatt,Tong Yu,Armine Vardazaryan,Fangfang Xia,Zixuan Zhao,Xia Tong,Fucang Jia,Yuxuan Yang,Hao Wang,YU De-rong,Guoyan Zheng,Xiaotian Duan,Neil Getty,Ricardo Sánchez-Matilla,Maria Robu,Li Zhang,Huabin Chen,Jiacheng Wang,Liansheng Wang,Bokai Zhang,Beerend G. A. Gerats,Sista Raviteja,Rachana Sathish,Rong Tao,Satoshi Kondo,Winnie Pang,Hongliang Ren,Julian Ronald Abbing,Mohammad Hasan Sarhan,Sebastian Bodenstedt,Nithya Bhasker,Bruno Alberto Soares Oliveira,Helena R. Torres,Ling Li,Finn Gaida,Tobias Czempiel,João L. Vilaça,Pedro Morais,Jaime C. Fonseca,Ruby Mae Egging,Inge Nicole Wijma,Qian Chen,Gui‐Bin Bian,Zhen Li,Velmurugan Balasubramanian,Debdoot Sheet,Imanol Luengo,Yuanbo Zhu,Shuai Ding,Jakob-Anton Aschenbrenner,Nicolas Elini van der Kar,Mengya Xu,Mobarakol Islam,Lalithkumar Seenivasan,Alexander Jenke,Danail Stoyanov,Didier Mutter,Pietro Mascagni,Barbara Seeliger,Cristians González,Nicolas Padoy
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:86: 102803-102803 被引量:13
标识
DOI:10.1016/j.media.2023.102803
摘要

Context-aware decision support in the operating room can foster surgical safety and efficiency by leveraging real-time feedback from surgical workflow analysis. Most existing works recognize surgical activities at a coarse-grained level, such as phases, steps or events, leaving out fine-grained interaction details about the surgical activity; yet those are needed for more helpful AI assistance in the operating room. Recognizing surgical actions as triplets of combination delivers comprehensive details about the activities taking place in surgical videos. This paper presents CholecTriplet2021: an endoscopic vision challenge organized at MICCAI 2021 for the recognition of surgical action triplets in laparoscopic videos. The challenge granted private access to the large-scale CholecT50 dataset, which is annotated with action triplet information. In this paper, we present the challenge setup and assessment of the state-of-the-art deep learning methods proposed by the participants during the challenge. A total of 4 baseline methods from the challenge organizers and 19 new deep learning algorithms by competing teams are presented to recognize surgical action triplets directly from surgical videos, achieving mean average precision (mAP) ranging from 4.2% to 38.1%. This study also analyzes the significance of the results obtained by the presented approaches, performs a thorough methodological comparison between them, in-depth result analysis, and proposes a novel ensemble method for enhanced recognition. Our analysis shows that surgical workflow analysis is not yet solved, and also highlights interesting directions for future research on fine-grained surgical activity recognition which is of utmost importance for the development of AI in surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天启完成签到,获得积分10
刚刚
爆米花应助宇哈哈采纳,获得10
1秒前
2秒前
3秒前
3秒前
3秒前
626发布了新的文献求助30
3秒前
3秒前
清水完成签到,获得积分10
6秒前
7秒前
8秒前
猛犸象冲冲冲完成签到,获得积分10
8秒前
优雅语兰发布了新的文献求助10
8秒前
8秒前
独特尔丝发布了新的文献求助10
8秒前
8秒前
8秒前
醉翁完成签到,获得积分10
9秒前
浅尝离白应助默默纲采纳,获得30
9秒前
搬工的砖人完成签到,获得积分10
9秒前
Pluto发布了新的文献求助20
10秒前
共享精神应助木子李采纳,获得10
10秒前
10秒前
11秒前
一丢丢完成签到,获得积分10
11秒前
12秒前
上官若男应助优雅语兰采纳,获得10
13秒前
大模型应助讨厌下雨采纳,获得10
13秒前
科研完成签到,获得积分10
13秒前
勤奋花瓣发布了新的文献求助10
13秒前
14秒前
袁奇点发布了新的文献求助10
14秒前
852应助淡淡菠萝采纳,获得10
15秒前
害怕的冬灵完成签到,获得积分10
15秒前
16秒前
cookieMichael发布了新的文献求助10
16秒前
17秒前
19秒前
19秒前
zhuo完成签到,获得积分10
20秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140698
求助须知:如何正确求助?哪些是违规求助? 2791571
关于积分的说明 7799545
捐赠科研通 2447907
什么是DOI,文献DOI怎么找? 1302182
科研通“疑难数据库(出版商)”最低求助积分说明 626459
版权声明 601194