材料科学
钛酸锂
阳极
电化学
介电谱
锂(药物)
离子键合
离子
电极
化学工程
锂离子电池
电池(电)
物理化学
化学
热力学
医学
功率(物理)
物理
有机化学
工程类
内分泌学
作者
Eunsoo Moon,Jeong Ki Hong,Sangram Keshari Mohanty,Yang Min,Kyuwook Ihm,Hosik Lee,Hyun Deog Yoo
标识
DOI:10.1016/j.jpowsour.2023.232657
摘要
Lithium titanate (Li4Ti5O12; LTO) is a promising anode material for fast (dis)charging Li-ion batteries (LIBs). However, its low Li diffusion coefficient and electronic conductivity limit its applications. Here, we uniformly coat the LTO surface with a 1.6 nm layer of partially lithiated titania (LixTiO2, x ≈ 0.5), which is found to be a mixed ionic-electronic conductor (MIEC), using a simple solid-state method. The MIEC layer simultaneously transfers electrons and Li-ions, facilitating efficient charge transfer to (de)lithiate LTO over the entire particle surface. MIEC-nanocoated LTO exhibits highly improved capacity retention and rate capability than pristine LTO; based on electrochemical simulations, MIEC nanocoating causes performance enhancement by maximum surface-area utilization for charge transfer. Furthermore, electrochemical impedance spectroscopy and density functional theory calculations confirm facile ionic transport and high electronic conductivity of LixTiO2 nanolayer. This general strategy of MIEC nanocoating can boost the electrochemical performances of various insulating electrodes, maximizing the materials utilization.
科研通智能强力驱动
Strongly Powered by AbleSci AI