Simulation and experimental study on milling mechanism and tool wear of low volume SiCp/Al composites

材料科学 破损 复合材料 碳化硅 表面粗糙度 刀具磨损 体积热力学 粒子(生态学) 搅拌摩擦加工 复合数 碳化物 冶金 机械加工 海洋学 物理 量子力学 地质学
作者
Ye Chen,Qi Gao,Quanzhao Wang,Xunyu Yin
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:237 (18): 4271-4283
标识
DOI:10.1177/09544062221148422
摘要

Silicon carbide particles reinforced aluminum matrix composites are widely used in national defense and related high-end technology fields due to their excellent mechanical properties. To explore the milling mechanism and tool wear mechanism of low-volume SiCp/Al composites in high velocity milling, the milling experiments for 20% volume SiCp/Al2009 composites were performed using a polycrystalline diamond (PCD) tools. A three-dimensional milling model of SiCp/Al composite was established considering the random distribution of SiC particles, the influence of milling parameters on surface quality was comprehensively analyzed and its cutting mechanism was described, and the wear forms and mechanism of PCD tools were revealed during milling of SiCp/Al composites. The result showed that the cutting depth is the main factor affecting the machined surface quality, followed by the spindle speed, and the feed rate has the smallest effect on it. It was observed that when spindle speed ( n) was 17,000 r/min, the feed rate ( f) was 8 mm/min, the depth of cut ( a p ) was 0.04 mm, the surface roughness value was the smallest, Ra was 0.056 μm. The surface morphology was mainly manifested as pits, cracks, burrs, and so on, subsurface defects included particle breakage, peeling, and matrix cracks, and the tool wear forms included chipping, flaking, and bond wear.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
越幸运完成签到 ,获得积分10
刚刚
young完成签到 ,获得积分10
刚刚
天天快乐应助成就的烧鹅采纳,获得10
1秒前
cora发布了新的文献求助10
1秒前
诚心的不斜完成签到,获得积分10
2秒前
bono完成签到 ,获得积分10
2秒前
2秒前
3秒前
又要起名字关注了科研通微信公众号
4秒前
可爱的函函应助su采纳,获得10
4秒前
5秒前
澳澳完成签到,获得积分10
6秒前
6秒前
善学以致用应助纯真抽屉采纳,获得10
7秒前
7秒前
笑笑发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
10秒前
Hello应助cora采纳,获得10
10秒前
汉唐精彩完成签到,获得积分10
11秒前
11秒前
12秒前
田茂青完成签到,获得积分10
12秒前
damian发布了新的文献求助30
12秒前
12秒前
聪明芒果完成签到,获得积分10
12秒前
Vvvvvvv应助虫二先生采纳,获得10
12秒前
西大研究生完成签到 ,获得积分10
12秒前
13秒前
13秒前
呆呆完成签到,获得积分10
13秒前
左一酱完成签到 ,获得积分10
14秒前
平淡南霜发布了新的文献求助10
14秒前
Sweet关注了科研通微信公众号
14秒前
14秒前
赘婿应助wangfu采纳,获得10
15秒前
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794