樟脑
生物
化学型
基因家族
生物合成
冰片
萜烯
基因簇
基因
基因组
遗传学
生物化学
植物
化学
精油
病理
医学
有机化学
中医药
替代医学
作者
Zerui Yang,Ting Zhan,Chunzhu Xie,Song Huang,Xiasheng Zheng
标识
DOI:10.1016/j.plaphy.2023.01.039
摘要
Terpene synthase (TPS) plays an important role in terpenoids biosynthesis. Cinnamomum camphora (camphor tree) contains dozens of terpenoids with medicinal value, especially borneol, which has been widely used since ancient times. However, limited information is available regarding the genome-wide identification and characterization of the TPS family in the C. camphora. In this study, 82 CcTPS genes were identified from the camphor tree genome (CTG). Gene cluster and sequence syntenic analysis suggested that tandem duplication occurred within the TPS family of the CTG, especially for the TPS-b subfamily. The chemotype-specific gene expression analysis showed significantly differential expression patterns among six chemotypes. It is worth noting that three genes (CcTPS26, CcTPS49 and CcTPS72) exhibited relatively high expression in the borneol-type camphor tree, compared to the other five chemotypes. Further functional characterization of them indicated that they were all bornyl diphosphate synthases (BPPSs), which function in catalyzing GPP into BPP and then undergoes dephosphorylation to yield borneol. This is the first report that multiple BPPSs exist within a single species. Intriguingly, CcTPS49 and CcTPS72 lead to the generation of dextral-borneol, while CcTPS26 contributes to the biosynthesis of levo-borneol. In addition, the functional characterization of another six CcTPSs suggested that they are responsible for the biosynthesis of linalool, eucalyptol and several other monoterpenes in camphor tree. In conclusion, these novel results provide a foundation for further exploration of the role of the CcTPS gene family and shed light on a better understanding of the biosynthesis and accumulation of monoterpenes in camphor tree.
科研通智能强力驱动
Strongly Powered by AbleSci AI