Rapid high‐fidelity T2* mapping using single‐shot overlapping‐echo acquisition and deep learning reconstruction

人工智能 成像体模 单发 计算机科学 重复性 参数统计 模式识别(心理学) Echo(通信协议) 失真(音乐) 计算机视觉 数学 核医学 物理 光学 带宽(计算) 放大器 统计 医学 计算机网络
作者
Qinqin Yang,Lingceng Ma,Zihan Zhou,Jianfeng Bao,Qizhi Yang,Haitao Huang,Shuhui Cai,Hongjian He,Zhong Chen,Jianhui Zhong,Congbo Cai
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:89 (6): 2157-2170 被引量:3
标识
DOI:10.1002/mrm.29585
摘要

Purpose To develop and evaluate a single‐shot quantitative MRI technique called GRE‐MOLED (gradient‐echo multiple overlapping‐echo detachment) for rapid mapping. Methods In GRE‐MOLED, multiple echoes with different TEs are generated and captured in a single shot of the k‐space through MOLED encoding and EPI readout. A deep neural network, trained by synthetic data, was employed for end‐to‐end parametric mapping from overlapping‐echo signals. GRE‐MOLED uses pure GRE acquisition with a single echo train to deliver maps less than 90 ms per slice. The self‐registered B 0 information modulated in image phase was utilized for distortion‐corrected parametric mapping. The proposed method was evaluated in phantoms, healthy volunteers, and task‐based FMRI experiments. Results The quantitative results of GRE‐MOLED mapping demonstrated good agreement with those obtained from the multi‐echo GRE method (Pearson's correlation coefficient = 0.991 and 0.973 for phantom and in vivo brains, respectively). High intrasubject repeatability (coefficient of variation <1.0%) were also achieved in scan–rescan test. Enabled by deep learning reconstruction, GRE‐MOLED showed excellent robustness to geometric distortion, noise, and random subject motion. Compared to the conventional FMRI approach, GRE‐MOLED also achieved a higher temporal SNR and BOLD sensitivity in task‐based FMRI. Conclusion GRE‐MOLED is a new real‐time technique for quantification with high efficiency and quality, and it has the potential to be a better quantitative BOLD detection method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
彭于晏应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
景辣条应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
宁少爷应助科研通管家采纳,获得30
3秒前
景辣条应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
景辣条应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
顾矜应助zorro3574采纳,获得10
5秒前
6秒前
9527完成签到,获得积分20
7秒前
7秒前
7秒前
酷波er应助含蓄妖丽采纳,获得10
7秒前
多摩川的烟花少年完成签到,获得积分10
8秒前
8秒前
zzp完成签到,获得积分10
8秒前
9秒前
北夏发布了新的文献求助10
9秒前
kk发布了新的文献求助10
10秒前
打打应助老王爱学习采纳,获得10
11秒前
SciGPT应助老王爱学习采纳,获得10
11秒前
朱朱朱发布了新的文献求助10
11秒前
12秒前
口口完成签到 ,获得积分10
12秒前
luluyu完成签到,获得积分10
13秒前
14秒前
wanci应助奇奇奇很奇妙采纳,获得10
15秒前
15秒前
Ava应助kk采纳,获得10
16秒前
17秒前
18秒前
落后的觅松完成签到,获得积分10
18秒前
Xide发布了新的文献求助10
18秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141417
求助须知:如何正确求助?哪些是违规求助? 2792460
关于积分的说明 7802814
捐赠科研通 2448645
什么是DOI,文献DOI怎么找? 1302695
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237