Integrating Preoperative Computed Tomography and Clinical Factors for Lymph Node Metastasis Prediction in Esophageal Squamous Cell Carcinoma by Feature-Wise Attentional Graph Neural Network

医学 食管鳞状细胞癌 放射科 特征(语言学) 人工智能 模式识别(心理学) 内科学 计算机科学 语言学 哲学
作者
Mingjun Ding,Hui Cui,Butuo Li,Bing Zou,Bingjie Fan,Li Ma,Zhendan Wang,Wanlong Li,Jinming Yu,Linlin Wang
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:116 (3): 676-689 被引量:7
标识
DOI:10.1016/j.ijrobp.2022.12.050
摘要

This study aimed to propose a regional lymph node (LN) metastasis prediction model for patients with esophageal squamous cell carcinoma (ESCC) that can learn and adaptively integrate preoperative computed tomography (CT) image features and nonimaging clinical parameters.Contrast-enhanced CT scans taken 2 weeks before surgery and 20 clinical factors, including general, pathologic, hematological, and diagnostic information, were collected from 357 patients with ESCC between October 2013 and November 2018. There were 999 regional LNs (857 negative, 142 positive) with pathologically confirmed status after surgery. All LNs were randomly divided into a training set (n = 738) and a validation set (n = 261) for testing. The feature-wise attentional graph neural network (FAGNN) was composed of (1) deep image feature extraction by the encoder of 3-dimensional UNet and high-level nonimaging factor representation by the clinical parameter encoder; (2) a feature-wise attention module for feature embedding with learnable adaptive weights; and (3) a graph attention layer to integrate the embedded features for final LN level metastasis prediction.Among the 4 models we constructed, FAGNN using both CT and clinical parameters as input is the model with the best performance, and the area under the curve (AUC) reaches 0.872, which is better than manual CT diagnosis method, multivariable model using CT only (AUC = 0.797), multivariable model with combined CT and clinical parameters (AUC = 0.846), and our FAGNN using CT only (AUC = 0.853).Our adaptive integration model improved the metastatic LN prediction performance based on CT and clinical parameters. Our model has the potential to foster effective fusion of multisourced parameters and to support early prognosis and personalized surgery or radiation therapy planning in patients with ESCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zQiao完成签到,获得积分10
刚刚
大反应釜发布了新的文献求助10
1秒前
1秒前
RDF完成签到,获得积分10
1秒前
拉普兰Z完成签到,获得积分10
1秒前
1秒前
SKJ发布了新的文献求助50
1秒前
洋洋完成签到 ,获得积分10
2秒前
科研通AI5应助dalei采纳,获得10
2秒前
圈圈发布了新的文献求助10
2秒前
2秒前
2秒前
BIN完成签到,获得积分10
2秒前
顾矜应助Godspeed采纳,获得10
3秒前
圆滑的铁勺完成签到,获得积分10
3秒前
xh发布了新的文献求助10
3秒前
fan发布了新的文献求助20
3秒前
doushabear发布了新的文献求助30
3秒前
4秒前
4秒前
selfevidbet完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
贪玩小小发布了新的文献求助10
5秒前
燕小丙完成签到,获得积分10
5秒前
wzy完成签到,获得积分10
5秒前
小廖完成签到,获得积分10
5秒前
lllfff发布了新的文献求助10
5秒前
吱布吱布完成签到,获得积分20
5秒前
nnnaaaa完成签到,获得积分10
6秒前
李爱国应助认真白薇采纳,获得10
6秒前
sdnihbhew发布了新的文献求助10
6秒前
6秒前
7秒前
hjx发布了新的文献求助10
7秒前
7秒前
tommorw发布了新的文献求助10
7秒前
8秒前
wangqinlei完成签到 ,获得积分10
8秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 500
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3767694
求助须知:如何正确求助?哪些是违规求助? 3312340
关于积分的说明 10163291
捐赠科研通 3027644
什么是DOI,文献DOI怎么找? 1661614
邀请新用户注册赠送积分活动 794172
科研通“疑难数据库(出版商)”最低求助积分说明 756013