Integrating Preoperative Computed Tomography and Clinical Factors for Lymph Node Metastasis Prediction in Esophageal Squamous Cell Carcinoma by Feature-Wise Attentional Graph Neural Network

医学 食管鳞状细胞癌 放射科 特征(语言学) 人工智能 模式识别(心理学) 内科学 计算机科学 语言学 哲学
作者
Mingjun Ding,Hui Cui,Butuo Li,Bing Zou,Bingjie Fan,Li Ma,Zhendan Wang,Wanlong Li,Jinming Yu,Linlin Wang
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:116 (3): 676-689 被引量:7
标识
DOI:10.1016/j.ijrobp.2022.12.050
摘要

This study aimed to propose a regional lymph node (LN) metastasis prediction model for patients with esophageal squamous cell carcinoma (ESCC) that can learn and adaptively integrate preoperative computed tomography (CT) image features and nonimaging clinical parameters.Contrast-enhanced CT scans taken 2 weeks before surgery and 20 clinical factors, including general, pathologic, hematological, and diagnostic information, were collected from 357 patients with ESCC between October 2013 and November 2018. There were 999 regional LNs (857 negative, 142 positive) with pathologically confirmed status after surgery. All LNs were randomly divided into a training set (n = 738) and a validation set (n = 261) for testing. The feature-wise attentional graph neural network (FAGNN) was composed of (1) deep image feature extraction by the encoder of 3-dimensional UNet and high-level nonimaging factor representation by the clinical parameter encoder; (2) a feature-wise attention module for feature embedding with learnable adaptive weights; and (3) a graph attention layer to integrate the embedded features for final LN level metastasis prediction.Among the 4 models we constructed, FAGNN using both CT and clinical parameters as input is the model with the best performance, and the area under the curve (AUC) reaches 0.872, which is better than manual CT diagnosis method, multivariable model using CT only (AUC = 0.797), multivariable model with combined CT and clinical parameters (AUC = 0.846), and our FAGNN using CT only (AUC = 0.853).Our adaptive integration model improved the metastatic LN prediction performance based on CT and clinical parameters. Our model has the potential to foster effective fusion of multisourced parameters and to support early prognosis and personalized surgery or radiation therapy planning in patients with ESCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
w1完成签到,获得积分10
1秒前
libra完成签到,获得积分10
1秒前
1秒前
小雨发布了新的文献求助10
1秒前
2213170089发布了新的文献求助10
2秒前
坚强幼南发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
科目三应助承乐采纳,获得10
3秒前
火红的风筝完成签到 ,获得积分10
3秒前
Hello应助小巧大山采纳,获得30
3秒前
kingwill应助heth采纳,获得20
3秒前
半个榴莲关注了科研通微信公众号
3秒前
Ava应助泡泡采纳,获得10
4秒前
luozhen发布了新的文献求助10
4秒前
聪慧含羞草完成签到 ,获得积分10
5秒前
苏我入鹿发布了新的文献求助10
6秒前
朝花夕拾发布了新的文献求助10
6秒前
6秒前
LCM666发布了新的文献求助10
6秒前
7秒前
星辰大海应助自觉士萧采纳,获得10
7秒前
7秒前
华仔应助狂野傲南采纳,获得10
7秒前
海绵宝宝发布了新的文献求助10
8秒前
shangxinyu发布了新的文献求助10
8秒前
123123发布了新的文献求助10
8秒前
shadow发布了新的文献求助20
8秒前
耍酷亦玉应助秦子越采纳,获得10
9秒前
9秒前
Swift168_YY完成签到 ,获得积分10
9秒前
小雨完成签到,获得积分10
9秒前
上官若男应助棋士采纳,获得10
9秒前
9秒前
爆米花应助畅快的不言采纳,获得10
9秒前
unique完成签到,获得积分10
10秒前
文艺寄灵发布了新的文献求助10
10秒前
10秒前
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951920
求助须知:如何正确求助?哪些是违规求助? 3497285
关于积分的说明 11086653
捐赠科研通 3227867
什么是DOI,文献DOI怎么找? 1784535
邀请新用户注册赠送积分活动 868732
科研通“疑难数据库(出版商)”最低求助积分说明 801180