Integrating Preoperative Computed Tomography and Clinical Factors for Lymph Node Metastasis Prediction in Esophageal Squamous Cell Carcinoma by Feature-Wise Attentional Graph Neural Network

医学 食管鳞状细胞癌 放射科 特征(语言学) 人工智能 模式识别(心理学) 内科学 计算机科学 语言学 哲学
作者
Mingjun Ding,Hui Cui,Butuo Li,Bing Zou,Bin Fan,Li Ma,Zhendan Wang,Wanlong Li,Jinming Yu,Linlin Wang
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:116 (3): 676-689 被引量:2
标识
DOI:10.1016/j.ijrobp.2022.12.050
摘要

This study aimed to propose a regional lymph node (LN) metastasis prediction model for patients with esophageal squamous cell carcinoma (ESCC) that can learn and adaptively integrate preoperative computed tomography (CT) image features and nonimaging clinical parameters.Contrast-enhanced CT scans taken 2 weeks before surgery and 20 clinical factors, including general, pathologic, hematological, and diagnostic information, were collected from 357 patients with ESCC between October 2013 and November 2018. There were 999 regional LNs (857 negative, 142 positive) with pathologically confirmed status after surgery. All LNs were randomly divided into a training set (n = 738) and a validation set (n = 261) for testing. The feature-wise attentional graph neural network (FAGNN) was composed of (1) deep image feature extraction by the encoder of 3-dimensional UNet and high-level nonimaging factor representation by the clinical parameter encoder; (2) a feature-wise attention module for feature embedding with learnable adaptive weights; and (3) a graph attention layer to integrate the embedded features for final LN level metastasis prediction.Among the 4 models we constructed, FAGNN using both CT and clinical parameters as input is the model with the best performance, and the area under the curve (AUC) reaches 0.872, which is better than manual CT diagnosis method, multivariable model using CT only (AUC = 0.797), multivariable model with combined CT and clinical parameters (AUC = 0.846), and our FAGNN using CT only (AUC = 0.853).Our adaptive integration model improved the metastatic LN prediction performance based on CT and clinical parameters. Our model has the potential to foster effective fusion of multisourced parameters and to support early prognosis and personalized surgery or radiation therapy planning in patients with ESCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
结实的丹雪完成签到,获得积分10
1秒前
xuxiaoyan完成签到,获得积分10
1秒前
2秒前
重要半兰发布了新的文献求助10
2秒前
3秒前
薰硝壤应助ren采纳,获得50
3秒前
3秒前
jane完成签到,获得积分10
4秒前
4秒前
无有山发布了新的文献求助10
4秒前
4秒前
李健的小迷弟应助旺旺采纳,获得10
4秒前
俭朴的小熊猫完成签到,获得积分10
4秒前
白白不焦虑完成签到,获得积分10
5秒前
完美世界应助旅行的天空采纳,获得10
5秒前
典雅碧空发布了新的文献求助10
5秒前
shadow完成签到 ,获得积分10
6秒前
会飞的史迪奇完成签到,获得积分20
7秒前
crowd_lpy发布了新的文献求助10
7秒前
7秒前
7秒前
zcy发布了新的文献求助10
7秒前
毛毛发布了新的文献求助30
8秒前
无无发布了新的文献求助10
8秒前
8秒前
515发布了新的文献求助20
9秒前
优雅狗发布了新的文献求助10
9秒前
sonshun完成签到,获得积分20
9秒前
leo发布了新的文献求助10
9秒前
10秒前
fengmian发布了新的文献求助10
10秒前
隐形曼青应助YUDI采纳,获得10
10秒前
woods完成签到,获得积分10
11秒前
科研通AI2S应助典雅碧空采纳,获得10
11秒前
chenyunxia应助木刻青、采纳,获得10
11秒前
11秒前
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156110
求助须知:如何正确求助?哪些是违规求助? 2807513
关于积分的说明 7873605
捐赠科研通 2465844
什么是DOI,文献DOI怎么找? 1312456
科研通“疑难数据库(出版商)”最低求助积分说明 630107
版权声明 601905