Causality-Driven Graph Neural Network for Early Diagnosis of Pancreatic Cancer in Non-Contrast Computerized Tomography

人工智能 计算机科学 判别式 概化理论 一般化 医学诊断 机器学习 人工神经网络 胰腺癌 模式识别(心理学) 图形 癌症 医学 理论计算机科学 放射科 数学 数学分析 内科学 统计
作者
Xinyue Li,Rui Guo,Jing Lu,Tao Chen,Xiaohua Qian
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (6): 1656-1667 被引量:26
标识
DOI:10.1109/tmi.2023.3236162
摘要

Pancreatic cancer is the emperor of all cancer maladies, mainly because there are no characteristic symptoms in the early stages, resulting in the absence of effective screening and early diagnosis methods in clinical practice. Non-contrast computerized tomography (CT) is widely used in routine check-ups and clinical examinations. Therefore, based on the accessibility of non-contrast CT, an automated early diagnosismethod for pancreatic cancer is proposed. Among this, we develop a novel causalitydriven graph neural network to solve the challenges of stability and generalization of early diagnosis, that is, the proposed method achieves stable performance for datasets from different hospitals, which highlights its clinical significance. Specifically, a multiple-instance-learning framework is designed to extract fine-grained pancreatic tumor features. Afterwards, to ensure the integrity and stability of the tumor features, we construct an adaptivemetric graph neural network that effectively encodes prior relationships of spatial proximity and feature similarity for multiple instances, and hence adaptively fuses the tumor features. Besides, a causal contrastivemechanism is developed to decouple the causality-driven and non-causal components of the discriminative features, suppress the non-causal ones, and hence improve the model stability and generalization. Extensive experiments demonstrated that the proposed method achieved the promising early diagnosis performance, and its stability and generalizability were independently verified on amulti-center dataset. Thus, the proposed method provides a valuable clinical tool for the early diagnosis of pancreatic cancer. Our source codes will be released at https://github.com/SJTUBME-QianLab/ CGNN-PC-Early-Diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
戊烷完成签到,获得积分10
刚刚
阔达的海完成签到,获得积分10
刚刚
1秒前
番茄炒西红柿完成签到,获得积分10
1秒前
冷静灵竹完成签到,获得积分10
1秒前
余喆完成签到,获得积分10
2秒前
Yuanchaoyi发布了新的文献求助10
2秒前
李天乐发布了新的文献求助10
2秒前
金元宝完成签到,获得积分10
2秒前
充电宝应助伶俐问薇采纳,获得10
2秒前
希望天下0贩的0应助大白采纳,获得10
3秒前
情怀应助怕黑的凝旋采纳,获得10
3秒前
mrlow完成签到,获得积分10
3秒前
gelinhao完成签到,获得积分10
4秒前
GEN完成签到,获得积分20
5秒前
5秒前
iiing完成签到,获得积分10
5秒前
5秒前
重要的板凳完成签到,获得积分10
5秒前
Venus完成签到,获得积分10
5秒前
田様应助吹风机采纳,获得10
5秒前
自然的霸完成签到,获得积分10
6秒前
深情安青应助珊珊采纳,获得10
6秒前
壮观的夏蓉完成签到,获得积分0
6秒前
机灵似狮发布了新的文献求助10
6秒前
云深不知处完成签到,获得积分10
7秒前
康丽完成签到,获得积分10
7秒前
9秒前
橘酥酥呀完成签到,获得积分20
9秒前
9秒前
Ava应助微眠采纳,获得10
9秒前
向浩完成签到,获得积分10
9秒前
英姑应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
CCY完成签到,获得积分10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
10秒前
long应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118837
求助须知:如何正确求助?哪些是违规求助? 4324693
关于积分的说明 13473527
捐赠科研通 4157793
什么是DOI,文献DOI怎么找? 2278607
邀请新用户注册赠送积分活动 1280375
关于科研通互助平台的介绍 1219167