Causality-Driven Graph Neural Network for Early Diagnosis of Pancreatic Cancer in Non-Contrast Computerized Tomography

人工智能 计算机科学 判别式 概化理论 一般化 医学诊断 机器学习 人工神经网络 胰腺癌 模式识别(心理学) 图形 癌症 医学 理论计算机科学 放射科 数学 数学分析 内科学 统计
作者
Xinyue Li,Rui Guo,Jing Lu,Tao Chen,Xiaohua Qian
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (6): 1656-1667 被引量:18
标识
DOI:10.1109/tmi.2023.3236162
摘要

Pancreatic cancer is the emperor of all cancer maladies, mainly because there are no characteristic symptoms in the early stages, resulting in the absence of effective screening and early diagnosis methods in clinical practice. Non-contrast computerized tomography (CT) is widely used in routine check-ups and clinical examinations. Therefore, based on the accessibility of non-contrast CT, an automated early diagnosismethod for pancreatic cancer is proposed. Among this, we develop a novel causalitydriven graph neural network to solve the challenges of stability and generalization of early diagnosis, that is, the proposed method achieves stable performance for datasets from different hospitals, which highlights its clinical significance. Specifically, a multiple-instance-learning framework is designed to extract fine-grained pancreatic tumor features. Afterwards, to ensure the integrity and stability of the tumor features, we construct an adaptivemetric graph neural network that effectively encodes prior relationships of spatial proximity and feature similarity for multiple instances, and hence adaptively fuses the tumor features. Besides, a causal contrastivemechanism is developed to decouple the causality-driven and non-causal components of the discriminative features, suppress the non-causal ones, and hence improve the model stability and generalization. Extensive experiments demonstrated that the proposed method achieved the promising early diagnosis performance, and its stability and generalizability were independently verified on amulti-center dataset. Thus, the proposed method provides a valuable clinical tool for the early diagnosis of pancreatic cancer. Our source codes will be released at https://github.com/SJTUBME-QianLab/ CGNN-PC-Early-Diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助孤独的匕采纳,获得10
1秒前
孤檠完成签到,获得积分20
1秒前
常葶完成签到,获得积分10
2秒前
Karhu89完成签到,获得积分10
2秒前
Twikky发布了新的文献求助10
2秒前
刻苦不弱完成签到,获得积分10
2秒前
彤快乐完成签到,获得积分10
2秒前
果实完成签到,获得积分10
3秒前
3秒前
4秒前
XU完成签到 ,获得积分10
5秒前
zhaoyaoshi完成签到 ,获得积分10
5秒前
无限毛豆发布了新的文献求助10
5秒前
小棉背心完成签到 ,获得积分10
6秒前
6秒前
此时天完成签到,获得积分10
6秒前
6秒前
春华秋实发布了新的文献求助10
7秒前
惊蛰时分听春雷完成签到,获得积分10
8秒前
lvxh完成签到,获得积分10
8秒前
辉@完成签到,获得积分10
8秒前
Annnn完成签到,获得积分10
8秒前
dingxiaosong完成签到,获得积分10
9秒前
9秒前
田睿发布了新的文献求助10
10秒前
孙友浩完成签到,获得积分10
11秒前
花开半夏完成签到,获得积分10
11秒前
Wang完成签到,获得积分10
11秒前
晓军发布了新的文献求助10
12秒前
大气的画板完成签到 ,获得积分10
13秒前
EinsamAlive完成签到,获得积分10
14秒前
孤独的匕发布了新的文献求助10
15秒前
WYZ完成签到,获得积分10
15秒前
重要的道之完成签到 ,获得积分20
15秒前
16秒前
Raylihuang应助念与惜采纳,获得10
16秒前
风信子发布了新的文献求助100
17秒前
cnkly完成签到,获得积分10
17秒前
zs完成签到,获得积分10
17秒前
18秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793801
关于积分的说明 7807889
捐赠科研通 2450113
什么是DOI,文献DOI怎么找? 1303653
科研通“疑难数据库(出版商)”最低求助积分说明 627017
版权声明 601350