Causality-Driven Graph Neural Network for Early Diagnosis of Pancreatic Cancer in Non-Contrast Computerized Tomography

人工智能 计算机科学 判别式 概化理论 一般化 医学诊断 机器学习 人工神经网络 胰腺癌 模式识别(心理学) 图形 癌症 医学 理论计算机科学 放射科 数学 数学分析 内科学 统计
作者
Xinyue Li,Rui Guo,Jing Lu,Tao Chen,Xiaohua Qian
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (6): 1656-1667 被引量:20
标识
DOI:10.1109/tmi.2023.3236162
摘要

Pancreatic cancer is the emperor of all cancer maladies, mainly because there are no characteristic symptoms in the early stages, resulting in the absence of effective screening and early diagnosis methods in clinical practice. Non-contrast computerized tomography (CT) is widely used in routine check-ups and clinical examinations. Therefore, based on the accessibility of non-contrast CT, an automated early diagnosismethod for pancreatic cancer is proposed. Among this, we develop a novel causalitydriven graph neural network to solve the challenges of stability and generalization of early diagnosis, that is, the proposed method achieves stable performance for datasets from different hospitals, which highlights its clinical significance. Specifically, a multiple-instance-learning framework is designed to extract fine-grained pancreatic tumor features. Afterwards, to ensure the integrity and stability of the tumor features, we construct an adaptivemetric graph neural network that effectively encodes prior relationships of spatial proximity and feature similarity for multiple instances, and hence adaptively fuses the tumor features. Besides, a causal contrastivemechanism is developed to decouple the causality-driven and non-causal components of the discriminative features, suppress the non-causal ones, and hence improve the model stability and generalization. Extensive experiments demonstrated that the proposed method achieved the promising early diagnosis performance, and its stability and generalizability were independently verified on amulti-center dataset. Thus, the proposed method provides a valuable clinical tool for the early diagnosis of pancreatic cancer. Our source codes will be released at https://github.com/SJTUBME-QianLab/ CGNN-PC-Early-Diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123cxj发布了新的文献求助10
1秒前
星辰大海应助红红采纳,获得10
1秒前
sweetbearm应助小周采纳,获得10
2秒前
科研通AI5应助赖道之采纳,获得10
2秒前
3秒前
HonamC完成签到,获得积分10
4秒前
十三十四十五完成签到,获得积分10
5秒前
潇洒的问夏完成签到 ,获得积分10
7秒前
无声瀑布完成签到,获得积分10
7秒前
Bingtao_Lian完成签到 ,获得积分10
8秒前
小布丁完成签到 ,获得积分10
8秒前
竹筏过海应助季生采纳,获得30
9秒前
10秒前
buno应助22采纳,获得10
11秒前
赘婿应助TT采纳,获得10
12秒前
12秒前
12秒前
13秒前
Jenny应助赖道之采纳,获得10
15秒前
依古比古完成签到 ,获得积分10
17秒前
汎影发布了新的文献求助10
17秒前
小二完成签到,获得积分10
17秒前
18秒前
20秒前
顾矜应助长情洙采纳,获得10
20秒前
monere发布了新的文献求助30
20秒前
Xiaoxiao应助汉关采纳,获得10
22秒前
22秒前
汎影完成签到,获得积分10
23秒前
24秒前
Chen发布了新的文献求助10
26秒前
WW完成签到,获得积分10
26秒前
28秒前
hyjcnhyj完成签到,获得积分10
29秒前
英姑应助赖道之采纳,获得10
30秒前
32秒前
研友_LXdbaL发布了新的文献求助30
32秒前
思源应助单薄新烟采纳,获得10
33秒前
33秒前
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808