已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Causality-Driven Graph Neural Network for Early Diagnosis of Pancreatic Cancer in Non-Contrast Computerized Tomography

人工智能 计算机科学 判别式 概化理论 一般化 医学诊断 机器学习 人工神经网络 胰腺癌 模式识别(心理学) 图形 癌症 医学 理论计算机科学 放射科 数学 数学分析 内科学 统计
作者
Xinyue Li,Rui Guo,Jing Lu,Tao Chen,Xiaohua Qian
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (6): 1656-1667 被引量:37
标识
DOI:10.1109/tmi.2023.3236162
摘要

Pancreatic cancer is the emperor of all cancer maladies, mainly because there are no characteristic symptoms in the early stages, resulting in the absence of effective screening and early diagnosis methods in clinical practice. Non-contrast computerized tomography (CT) is widely used in routine check-ups and clinical examinations. Therefore, based on the accessibility of non-contrast CT, an automated early diagnosismethod for pancreatic cancer is proposed. Among this, we develop a novel causalitydriven graph neural network to solve the challenges of stability and generalization of early diagnosis, that is, the proposed method achieves stable performance for datasets from different hospitals, which highlights its clinical significance. Specifically, a multiple-instance-learning framework is designed to extract fine-grained pancreatic tumor features. Afterwards, to ensure the integrity and stability of the tumor features, we construct an adaptivemetric graph neural network that effectively encodes prior relationships of spatial proximity and feature similarity for multiple instances, and hence adaptively fuses the tumor features. Besides, a causal contrastivemechanism is developed to decouple the causality-driven and non-causal components of the discriminative features, suppress the non-causal ones, and hence improve the model stability and generalization. Extensive experiments demonstrated that the proposed method achieved the promising early diagnosis performance, and its stability and generalizability were independently verified on amulti-center dataset. Thus, the proposed method provides a valuable clinical tool for the early diagnosis of pancreatic cancer. Our source codes will be released at https://github.com/SJTUBME-QianLab/ CGNN-PC-Early-Diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雅士白农学家完成签到,获得积分10
刚刚
兜兜风gf完成签到 ,获得积分10
1秒前
称心的冰安完成签到,获得积分10
1秒前
yinlao完成签到,获得积分10
2秒前
Vintoe完成签到 ,获得积分10
2秒前
听曲散步完成签到,获得积分10
2秒前
2秒前
明亮的幻灵完成签到,获得积分10
4秒前
lijunliang完成签到 ,获得积分10
4秒前
七号在野闪闪完成签到 ,获得积分10
5秒前
rayc应助卡皮巴拉桑采纳,获得10
5秒前
所所应助实物图采纳,获得10
6秒前
晨晨完成签到 ,获得积分10
6秒前
Carole完成签到 ,获得积分10
7秒前
Akim应助雅士白农学家采纳,获得10
7秒前
韦鑫龙完成签到,获得积分10
7秒前
7秒前
半斤完成签到 ,获得积分10
8秒前
10秒前
nav完成签到 ,获得积分10
10秒前
Tohka完成签到 ,获得积分10
10秒前
RRR232完成签到 ,获得积分10
10秒前
11秒前
大方听白完成签到 ,获得积分10
11秒前
123完成签到 ,获得积分10
13秒前
聪聪great发布了新的文献求助10
14秒前
01259完成签到 ,获得积分10
15秒前
嘁嘁嘁发布了新的文献求助10
15秒前
16秒前
azon完成签到 ,获得积分10
17秒前
韦老虎完成签到,获得积分20
18秒前
聪聪great完成签到,获得积分20
18秒前
19秒前
徐zhipei完成签到 ,获得积分10
19秒前
20秒前
20秒前
20秒前
20秒前
Criminology34应助HH采纳,获得10
21秒前
神奇五子棋完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407525
求助须知:如何正确求助?哪些是违规求助? 4525082
关于积分的说明 14100857
捐赠科研通 4438819
什么是DOI,文献DOI怎么找? 2436491
邀请新用户注册赠送积分活动 1428483
关于科研通互助平台的介绍 1406504