Causality-Driven Graph Neural Network for Early Diagnosis of Pancreatic Cancer in Non-Contrast Computerized Tomography

人工智能 计算机科学 判别式 概化理论 一般化 医学诊断 机器学习 人工神经网络 胰腺癌 模式识别(心理学) 图形 癌症 医学 理论计算机科学 放射科 数学 数学分析 内科学 统计
作者
Xinyue Li,Rui Guo,Jing Lu,Tao Chen,Xiaohua Qian
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (6): 1656-1667 被引量:37
标识
DOI:10.1109/tmi.2023.3236162
摘要

Pancreatic cancer is the emperor of all cancer maladies, mainly because there are no characteristic symptoms in the early stages, resulting in the absence of effective screening and early diagnosis methods in clinical practice. Non-contrast computerized tomography (CT) is widely used in routine check-ups and clinical examinations. Therefore, based on the accessibility of non-contrast CT, an automated early diagnosismethod for pancreatic cancer is proposed. Among this, we develop a novel causalitydriven graph neural network to solve the challenges of stability and generalization of early diagnosis, that is, the proposed method achieves stable performance for datasets from different hospitals, which highlights its clinical significance. Specifically, a multiple-instance-learning framework is designed to extract fine-grained pancreatic tumor features. Afterwards, to ensure the integrity and stability of the tumor features, we construct an adaptivemetric graph neural network that effectively encodes prior relationships of spatial proximity and feature similarity for multiple instances, and hence adaptively fuses the tumor features. Besides, a causal contrastivemechanism is developed to decouple the causality-driven and non-causal components of the discriminative features, suppress the non-causal ones, and hence improve the model stability and generalization. Extensive experiments demonstrated that the proposed method achieved the promising early diagnosis performance, and its stability and generalizability were independently verified on amulti-center dataset. Thus, the proposed method provides a valuable clinical tool for the early diagnosis of pancreatic cancer. Our source codes will be released at https://github.com/SJTUBME-QianLab/ CGNN-PC-Early-Diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
cldg完成签到,获得积分10
3秒前
5秒前
bbyambix发布了新的文献求助10
6秒前
哈哈哈哈哈哈完成签到,获得积分10
6秒前
6秒前
farewell发布了新的文献求助10
6秒前
7秒前
619026854发布了新的文献求助10
8秒前
8秒前
李爱国应助Jenny采纳,获得20
9秒前
ericssong发布了新的文献求助10
9秒前
Keira_Chang完成签到,获得积分10
9秒前
10秒前
温暖的问候完成签到,获得积分10
10秒前
酷波er应助寻悦采纳,获得10
11秒前
欢呼的棒棒糖完成签到,获得积分10
12秒前
Vvvnnnaa1发布了新的文献求助10
12秒前
一生总发布了新的文献求助10
12秒前
甜甜甜发布了新的文献求助20
13秒前
13秒前
14秒前
14秒前
欣喜的饼干完成签到,获得积分10
14秒前
15秒前
霸气的冰旋完成签到 ,获得积分10
15秒前
欢呼紫菜完成签到,获得积分10
16秒前
17秒前
CATH完成签到 ,获得积分10
17秒前
17秒前
FashionBoy应助卜凡采纳,获得10
18秒前
18秒前
暮沐晓光完成签到,获得积分10
19秒前
共享精神应助Vvvnnnaa1采纳,获得10
19秒前
19秒前
核桃发布了新的文献求助30
20秒前
刘畅完成签到,获得积分20
20秒前
无限不尤发布了新的文献求助10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305259
求助须知:如何正确求助?哪些是违规求助? 4451472
关于积分的说明 13852140
捐赠科研通 4338857
什么是DOI,文献DOI怎么找? 2382237
邀请新用户注册赠送积分活动 1377329
关于科研通互助平台的介绍 1344719