Identification of Chinese red wine origins based on Raman spectroscopy and deep learning

葡萄酒 拉曼光谱 人工智能 主成分分析 卷积神经网络 模式识别(心理学) 化学 分析化学(期刊) 计算机科学 食品科学 色谱法 物理 光学
作者
Bingxu Lu,Feng Tian,Cheng Chen,Wei Wu,Xuecong Tian,Chen Chen,Xiaoyi Lv
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:291: 122355-122355 被引量:22
标识
DOI:10.1016/j.saa.2023.122355
摘要

In this study, we combined Raman spectroscopy with deep learning for the first time to establish an accurate, simple, and fast method to identify the origin of red wines. We collected Raman spectra from 200 red wine samples of the Cabernet Sauvignon variety from four different origins with a portable Raman spectrometer. The red wine samples, made in 2021, were from the same producer in China. Differences were found by analyzing the Raman spectra of red wine samples. These differences are mainly caused by ethanol, carboxylic acids, and polyphenols. After further analysis, for different origins, the different performances of these substances on the Raman spectrum are related to the climate and geographical conditions of the origin. The Raman spectra were analyzed by principal component analysis (PCA). The data with PCA dimensionality reduction were imported into an artificial neural network (ANN), multifeature fusion convolutional neural network (MCNN), GoogLeNet, and residual neural network (ResNet) to establish red wine origin identification models. The classification results of the model prove that climate, geography, and other conditions can provide support for the classification of red wine origin. The experiments showed that all four models performed well, among which MCNN performed the best with 93.2% classification accuracy, and the area under the curve (AUC) was 0.987. This study provides a new means to classify the origin of red wine and opens up new ideas for identifying origins in the food field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助Xxaaa采纳,获得10
刚刚
1秒前
1秒前
1秒前
段段完成签到,获得积分10
1秒前
Dddd发布了新的文献求助10
2秒前
hahah发布了新的文献求助10
3秒前
yep完成签到,获得积分10
3秒前
gguc发布了新的文献求助10
3秒前
大个应助yyy采纳,获得10
4秒前
你爹完成签到,获得积分10
4秒前
鳗鱼鞋垫完成签到 ,获得积分10
4秒前
dong发布了新的文献求助30
4秒前
5秒前
Lin发布了新的文献求助10
5秒前
Ll发布了新的文献求助50
5秒前
6秒前
晚风发布了新的文献求助10
6秒前
zjuroc发布了新的文献求助20
7秒前
坦率的松发布了新的文献求助10
7秒前
xiaokai完成签到,获得积分10
7秒前
7秒前
7秒前
Czy完成签到,获得积分10
7秒前
8秒前
小满完成签到,获得积分10
8秒前
文忉嫣完成签到,获得积分10
8秒前
8秒前
9秒前
落后秋柳完成签到,获得积分20
9秒前
Akim应助zz采纳,获得10
9秒前
10秒前
三九发布了新的文献求助10
11秒前
科研通AI5应助czq采纳,获得30
11秒前
12秒前
12秒前
12秒前
坦率的松完成签到,获得积分10
12秒前
传奇3应助贤惠的正豪采纳,获得10
13秒前
111发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762