Identification of Chinese red wine origins based on Raman spectroscopy and deep learning

葡萄酒 拉曼光谱 人工智能 主成分分析 卷积神经网络 模式识别(心理学) 人工神经网络 化学 计算机科学 食品科学 物理 光学
作者
Bingxu Lu,Feng Tian,Cheng Chen,Wei Wu,Xuecong Tian,Chen Chen,Xiaoyi Lv
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:291: 122355-122355 被引量:15
标识
DOI:10.1016/j.saa.2023.122355
摘要

In this study, we combined Raman spectroscopy with deep learning for the first time to establish an accurate, simple, and fast method to identify the origin of red wines. We collected Raman spectra from 200 red wine samples of the Cabernet Sauvignon variety from four different origins with a portable Raman spectrometer. The red wine samples, made in 2021, were from the same producer in China. Differences were found by analyzing the Raman spectra of red wine samples. These differences are mainly caused by ethanol, carboxylic acids, and polyphenols. After further analysis, for different origins, the different performances of these substances on the Raman spectrum are related to the climate and geographical conditions of the origin. The Raman spectra were analyzed by principal component analysis (PCA). The data with PCA dimensionality reduction were imported into an artificial neural network (ANN), multifeature fusion convolutional neural network (MCNN), GoogLeNet, and residual neural network (ResNet) to establish red wine origin identification models. The classification results of the model prove that climate, geography, and other conditions can provide support for the classification of red wine origin. The experiments showed that all four models performed well, among which MCNN performed the best with 93.2% classification accuracy, and the area under the curve (AUC) was 0.987. This study provides a new means to classify the origin of red wine and opens up new ideas for identifying origins in the food field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sweat完成签到,获得积分10
1秒前
2秒前
史道夫发布了新的文献求助10
2秒前
yuhanger完成签到,获得积分10
2秒前
sclai发布了新的文献求助10
2秒前
4秒前
搜集达人应助yxb采纳,获得10
6秒前
yu完成签到,获得积分10
6秒前
所所应助张琼敏采纳,获得10
8秒前
8秒前
10秒前
10秒前
11秒前
小雷al完成签到,获得积分10
11秒前
WHY发布了新的文献求助10
11秒前
11秒前
11秒前
跳跃的邪欢完成签到,获得积分10
11秒前
71发布了新的文献求助10
11秒前
小白完成签到,获得积分10
12秒前
嗯哼应助机智谷蕊采纳,获得20
12秒前
12秒前
wsh发布了新的文献求助10
15秒前
MJ发布了新的文献求助10
15秒前
万海发布了新的文献求助10
15秒前
小二郎应助gyq2006采纳,获得10
15秒前
王欣发布了新的文献求助10
16秒前
fox发布了新的文献求助10
16秒前
16秒前
Ava应助晴天采纳,获得10
17秒前
tt完成签到,获得积分10
17秒前
田様应助71采纳,获得10
17秒前
Akim应助大清采纳,获得10
17秒前
Felix发布了新的文献求助10
17秒前
Peter Pan发布了新的文献求助10
18秒前
英俊的铭应助猪猪采纳,获得10
19秒前
共享精神应助简单的紫易采纳,获得10
19秒前
小张呢好完成签到,获得积分10
19秒前
西红柿炒番茄应助Suagy采纳,获得10
20秒前
zhu完成签到,获得积分20
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153568
求助须知:如何正确求助?哪些是违规求助? 2804730
关于积分的说明 7861428
捐赠科研通 2462728
什么是DOI,文献DOI怎么找? 1310940
科研通“疑难数据库(出版商)”最低求助积分说明 629428
版权声明 601809