Identification of Chinese red wine origins based on Raman spectroscopy and deep learning

葡萄酒 拉曼光谱 人工智能 主成分分析 卷积神经网络 模式识别(心理学) 化学 分析化学(期刊) 计算机科学 食品科学 色谱法 物理 光学
作者
Bingxu Lu,Feng Tian,Cheng Chen,Wei Wu,Xuecong Tian,Chen Chen,Xiaoyi Lv
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:291: 122355-122355 被引量:31
标识
DOI:10.1016/j.saa.2023.122355
摘要

In this study, we combined Raman spectroscopy with deep learning for the first time to establish an accurate, simple, and fast method to identify the origin of red wines. We collected Raman spectra from 200 red wine samples of the Cabernet Sauvignon variety from four different origins with a portable Raman spectrometer. The red wine samples, made in 2021, were from the same producer in China. Differences were found by analyzing the Raman spectra of red wine samples. These differences are mainly caused by ethanol, carboxylic acids, and polyphenols. After further analysis, for different origins, the different performances of these substances on the Raman spectrum are related to the climate and geographical conditions of the origin. The Raman spectra were analyzed by principal component analysis (PCA). The data with PCA dimensionality reduction were imported into an artificial neural network (ANN), multifeature fusion convolutional neural network (MCNN), GoogLeNet, and residual neural network (ResNet) to establish red wine origin identification models. The classification results of the model prove that climate, geography, and other conditions can provide support for the classification of red wine origin. The experiments showed that all four models performed well, among which MCNN performed the best with 93.2% classification accuracy, and the area under the curve (AUC) was 0.987. This study provides a new means to classify the origin of red wine and opens up new ideas for identifying origins in the food field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
君儿和闪电完成签到 ,获得积分10
刚刚
星雨完成签到,获得积分10
1秒前
1秒前
2秒前
小天空发布了新的文献求助10
2秒前
热心钢铁侠完成签到,获得积分10
2秒前
3秒前
4秒前
香蕉觅云应助999采纳,获得10
4秒前
苍墨墨墨墨完成签到,获得积分10
4秒前
niuniu完成签到 ,获得积分10
5秒前
充电宝应助箴言采纳,获得10
5秒前
小马甲应助钩子89采纳,获得10
5秒前
郭嘉彬发布了新的文献求助10
5秒前
完美世界应助tim采纳,获得10
6秒前
Akim应助paul采纳,获得10
6秒前
xuan完成签到 ,获得积分10
6秒前
CDX发布了新的文献求助10
6秒前
6秒前
无望完成签到,获得积分10
7秒前
7秒前
8秒前
CarryYi发布了新的文献求助10
8秒前
壮壮不爱吃肉完成签到,获得积分10
8秒前
汉堡包应助鲜榨白开水采纳,获得10
8秒前
你好CDY完成签到,获得积分10
8秒前
8秒前
郭嘉仪发布了新的文献求助10
8秒前
一个奎发布了新的文献求助10
9秒前
勤奋乐天完成签到,获得积分10
9秒前
ding应助Xin采纳,获得10
9秒前
安然完成签到,获得积分10
10秒前
开放依琴完成签到,获得积分10
10秒前
Akim应助mengtian采纳,获得10
11秒前
搜集达人应助小欣采纳,获得10
11秒前
栉风沐雨发布了新的文献求助10
11秒前
12秒前
Jason完成签到,获得积分20
12秒前
12秒前
隐形曼青应助要减肥小小采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545644
求助须知:如何正确求助?哪些是违规求助? 4631652
关于积分的说明 14621627
捐赠科研通 4573276
什么是DOI,文献DOI怎么找? 2507440
邀请新用户注册赠送积分活动 1484163
关于科研通互助平台的介绍 1455451