Identification of Chinese red wine origins based on Raman spectroscopy and deep learning

葡萄酒 拉曼光谱 人工智能 主成分分析 卷积神经网络 模式识别(心理学) 化学 分析化学(期刊) 计算机科学 食品科学 色谱法 物理 光学
作者
Bingxu Lu,Feng Tian,Cheng Chen,Wei Wu,Xuecong Tian,Chen Chen,Xiaoyi Lv
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:291: 122355-122355 被引量:31
标识
DOI:10.1016/j.saa.2023.122355
摘要

In this study, we combined Raman spectroscopy with deep learning for the first time to establish an accurate, simple, and fast method to identify the origin of red wines. We collected Raman spectra from 200 red wine samples of the Cabernet Sauvignon variety from four different origins with a portable Raman spectrometer. The red wine samples, made in 2021, were from the same producer in China. Differences were found by analyzing the Raman spectra of red wine samples. These differences are mainly caused by ethanol, carboxylic acids, and polyphenols. After further analysis, for different origins, the different performances of these substances on the Raman spectrum are related to the climate and geographical conditions of the origin. The Raman spectra were analyzed by principal component analysis (PCA). The data with PCA dimensionality reduction were imported into an artificial neural network (ANN), multifeature fusion convolutional neural network (MCNN), GoogLeNet, and residual neural network (ResNet) to establish red wine origin identification models. The classification results of the model prove that climate, geography, and other conditions can provide support for the classification of red wine origin. The experiments showed that all four models performed well, among which MCNN performed the best with 93.2% classification accuracy, and the area under the curve (AUC) was 0.987. This study provides a new means to classify the origin of red wine and opens up new ideas for identifying origins in the food field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
荣荣发布了新的文献求助10
刚刚
刚刚
充电宝应助科研通管家采纳,获得30
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得50
刚刚
Orange应助科研通管家采纳,获得10
刚刚
乐乐应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得30
1秒前
Cherish应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
1秒前
Lori发布了新的文献求助10
1秒前
2秒前
2秒前
郭丹丹完成签到 ,获得积分10
3秒前
景笑天发布了新的文献求助10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
NikiJu完成签到 ,获得积分10
5秒前
荣荣完成签到,获得积分10
7秒前
7秒前
充电宝应助小杨采纳,获得10
7秒前
zhang发布了新的文献求助10
7秒前
drirshad完成签到,获得积分10
8秒前
如梦如画发布了新的文献求助10
8秒前
星辰大海应助lhz采纳,获得10
8秒前
mym发布了新的文献求助10
10秒前
10秒前
希望天下0贩的0应助感谢采纳,获得10
11秒前
周周完成签到 ,获得积分10
12秒前
12秒前
xxx关注了科研通微信公众号
12秒前
13秒前
FF完成签到,获得积分10
13秒前
汉堡国王发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424903
求助须知:如何正确求助?哪些是违规求助? 4539135
关于积分的说明 14165791
捐赠科研通 4456231
什么是DOI,文献DOI怎么找? 2444084
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412492