亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of Chinese red wine origins based on Raman spectroscopy and deep learning

葡萄酒 拉曼光谱 人工智能 主成分分析 卷积神经网络 模式识别(心理学) 化学 分析化学(期刊) 计算机科学 食品科学 色谱法 物理 光学
作者
Bingxu Lu,Feng Tian,Cheng Chen,Wei Wu,Xuecong Tian,Chen Chen,Xiaoyi Lv
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:291: 122355-122355 被引量:31
标识
DOI:10.1016/j.saa.2023.122355
摘要

In this study, we combined Raman spectroscopy with deep learning for the first time to establish an accurate, simple, and fast method to identify the origin of red wines. We collected Raman spectra from 200 red wine samples of the Cabernet Sauvignon variety from four different origins with a portable Raman spectrometer. The red wine samples, made in 2021, were from the same producer in China. Differences were found by analyzing the Raman spectra of red wine samples. These differences are mainly caused by ethanol, carboxylic acids, and polyphenols. After further analysis, for different origins, the different performances of these substances on the Raman spectrum are related to the climate and geographical conditions of the origin. The Raman spectra were analyzed by principal component analysis (PCA). The data with PCA dimensionality reduction were imported into an artificial neural network (ANN), multifeature fusion convolutional neural network (MCNN), GoogLeNet, and residual neural network (ResNet) to establish red wine origin identification models. The classification results of the model prove that climate, geography, and other conditions can provide support for the classification of red wine origin. The experiments showed that all four models performed well, among which MCNN performed the best with 93.2% classification accuracy, and the area under the curve (AUC) was 0.987. This study provides a new means to classify the origin of red wine and opens up new ideas for identifying origins in the food field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaozhou发布了新的文献求助10
3秒前
lkk完成签到,获得积分20
4秒前
4秒前
计划发布了新的文献求助10
4秒前
黄芪完成签到 ,获得积分10
6秒前
lkk发布了新的文献求助10
6秒前
sdqdliangkun发布了新的文献求助10
9秒前
12秒前
科学家完成签到 ,获得积分20
13秒前
ding应助lkk采纳,获得10
18秒前
悠哉发布了新的文献求助10
18秒前
小丸子和zz完成签到 ,获得积分10
20秒前
动听衬衫完成签到 ,获得积分20
20秒前
TiAmo完成签到 ,获得积分10
22秒前
GingerF应助呵呵酱采纳,获得50
23秒前
CipherSage应助悠哉采纳,获得10
29秒前
32秒前
36秒前
大龙哥886应助酷炫的平蝶采纳,获得10
37秒前
37秒前
踏实的大神完成签到,获得积分10
37秒前
悲凉的冬天完成签到,获得积分10
40秒前
小杨发布了新的文献求助10
43秒前
田様应助xiaowang采纳,获得10
43秒前
MchemG应助ceeray23采纳,获得20
44秒前
48秒前
50秒前
有趣的银完成签到,获得积分10
52秒前
ZR666888发布了新的文献求助10
52秒前
科研通AI6应助Yiyong采纳,获得20
56秒前
57秒前
缓慢的三颜完成签到,获得积分10
57秒前
深情安青应助科研通管家采纳,获得10
1分钟前
黑翅鸢应助科研通管家采纳,获得10
1分钟前
Ava应助我爱物理采纳,获得10
1分钟前
茧茧完成签到 ,获得积分10
1分钟前
momo给momo的求助进行了留言
1分钟前
1分钟前
asheng完成签到,获得积分10
1分钟前
科研通AI6应助机智的明雪采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554672
求助须知:如何正确求助?哪些是违规求助? 4639324
关于积分的说明 14655924
捐赠科研通 4581173
什么是DOI,文献DOI怎么找? 2512637
邀请新用户注册赠送积分活动 1487389
关于科研通互助平台的介绍 1458262