Identification of Chinese red wine origins based on Raman spectroscopy and deep learning

葡萄酒 拉曼光谱 人工智能 主成分分析 卷积神经网络 模式识别(心理学) 化学 分析化学(期刊) 计算机科学 食品科学 色谱法 物理 光学
作者
Bingxu Lu,Feng Tian,Cheng Chen,Wei Wu,Xuecong Tian,Chen Chen,Xiaoyi Lv
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:291: 122355-122355 被引量:25
标识
DOI:10.1016/j.saa.2023.122355
摘要

In this study, we combined Raman spectroscopy with deep learning for the first time to establish an accurate, simple, and fast method to identify the origin of red wines. We collected Raman spectra from 200 red wine samples of the Cabernet Sauvignon variety from four different origins with a portable Raman spectrometer. The red wine samples, made in 2021, were from the same producer in China. Differences were found by analyzing the Raman spectra of red wine samples. These differences are mainly caused by ethanol, carboxylic acids, and polyphenols. After further analysis, for different origins, the different performances of these substances on the Raman spectrum are related to the climate and geographical conditions of the origin. The Raman spectra were analyzed by principal component analysis (PCA). The data with PCA dimensionality reduction were imported into an artificial neural network (ANN), multifeature fusion convolutional neural network (MCNN), GoogLeNet, and residual neural network (ResNet) to establish red wine origin identification models. The classification results of the model prove that climate, geography, and other conditions can provide support for the classification of red wine origin. The experiments showed that all four models performed well, among which MCNN performed the best with 93.2% classification accuracy, and the area under the curve (AUC) was 0.987. This study provides a new means to classify the origin of red wine and opens up new ideas for identifying origins in the food field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十七完成签到 ,获得积分10
刚刚
学不明白完成签到,获得积分10
1秒前
2秒前
2478甯完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
柒_l发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
斯文败类应助自觉冰巧采纳,获得10
9秒前
z11完成签到,获得积分10
9秒前
JamesPei应助12314采纳,获得10
10秒前
11秒前
哭泣半双发布了新的文献求助30
11秒前
小周发布了新的文献求助10
11秒前
13秒前
乐乐应助念念采纳,获得10
14秒前
啥也不懂完成签到,获得积分10
15秒前
知性的剑身完成签到,获得积分10
15秒前
我爱Chem发布了新的文献求助10
16秒前
17秒前
李健应助活泼的外套采纳,获得10
17秒前
yuaasusanaann发布了新的文献求助10
17秒前
小周完成签到,获得积分10
19秒前
哈哈哈发布了新的文献求助10
19秒前
少爷完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
遗梦梦完成签到 ,获得积分10
23秒前
23秒前
Ivia完成签到,获得积分10
24秒前
24秒前
ding应助Newky采纳,获得10
24秒前
25秒前
lllll发布了新的文献求助10
26秒前
博ge发布了新的文献求助10
27秒前
27秒前
YJJ发布了新的文献求助10
28秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980251
求助须知:如何正确求助?哪些是违规求助? 3524205
关于积分的说明 11220347
捐赠科研通 3261655
什么是DOI,文献DOI怎么找? 1800851
邀请新用户注册赠送积分活动 879332
科研通“疑难数据库(出版商)”最低求助积分说明 807234