Identification of Chinese red wine origins based on Raman spectroscopy and deep learning

葡萄酒 拉曼光谱 人工智能 主成分分析 卷积神经网络 模式识别(心理学) 化学 分析化学(期刊) 计算机科学 食品科学 色谱法 物理 光学
作者
Bingxu Lu,Feng Tian,Cheng Chen,Wei Wu,Xuecong Tian,Chen Chen,Xiaoyi Lv
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:291: 122355-122355 被引量:31
标识
DOI:10.1016/j.saa.2023.122355
摘要

In this study, we combined Raman spectroscopy with deep learning for the first time to establish an accurate, simple, and fast method to identify the origin of red wines. We collected Raman spectra from 200 red wine samples of the Cabernet Sauvignon variety from four different origins with a portable Raman spectrometer. The red wine samples, made in 2021, were from the same producer in China. Differences were found by analyzing the Raman spectra of red wine samples. These differences are mainly caused by ethanol, carboxylic acids, and polyphenols. After further analysis, for different origins, the different performances of these substances on the Raman spectrum are related to the climate and geographical conditions of the origin. The Raman spectra were analyzed by principal component analysis (PCA). The data with PCA dimensionality reduction were imported into an artificial neural network (ANN), multifeature fusion convolutional neural network (MCNN), GoogLeNet, and residual neural network (ResNet) to establish red wine origin identification models. The classification results of the model prove that climate, geography, and other conditions can provide support for the classification of red wine origin. The experiments showed that all four models performed well, among which MCNN performed the best with 93.2% classification accuracy, and the area under the curve (AUC) was 0.987. This study provides a new means to classify the origin of red wine and opens up new ideas for identifying origins in the food field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆豆美妞发布了新的文献求助10
1秒前
1秒前
2秒前
WWW完成签到,获得积分10
2秒前
hokin33发布了新的文献求助10
3秒前
4秒前
cchi完成签到,获得积分10
4秒前
4秒前
今后应助lriye采纳,获得10
4秒前
AN发布了新的文献求助10
4秒前
负责乐安发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
catalyst326完成签到,获得积分20
5秒前
5秒前
psycho发布了新的文献求助50
5秒前
5秒前
5秒前
WWW发布了新的文献求助10
5秒前
玄风应助Guoshibo采纳,获得10
6秒前
镓氧锌钇铀应助Guoshibo采纳,获得10
6秒前
完美世界应助Guoshibo采纳,获得10
6秒前
mwx应助Guoshibo采纳,获得10
6秒前
没什么存在感完成签到,获得积分10
6秒前
7秒前
7秒前
ding应助小马哥爱学习采纳,获得10
7秒前
7秒前
tc发布了新的文献求助10
7秒前
小蘑菇应助biocx采纳,获得10
7秒前
7秒前
9秒前
9秒前
9秒前
10秒前
我是老大应助dongdong采纳,获得10
10秒前
Jamson发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525775
求助须知:如何正确求助?哪些是违规求助? 4615867
关于积分的说明 14550800
捐赠科研通 4553950
什么是DOI,文献DOI怎么找? 2495593
邀请新用户注册赠送积分活动 1476136
关于科研通互助平台的介绍 1447836