Battery impedance spectrum prediction from partial charging voltage curve by machine learning

电阻抗 可解释性 电压 电池(电) 荷电状态 计算机科学 介电谱 航程(航空) 稳健性(进化) 材料科学 电子工程 控制理论(社会学) 电气工程 机器学习 人工智能 工程类 化学 电化学 电极 物理 热力学 功率(物理) 复合材料 物理化学 基因 控制(管理) 生物化学
作者
Jia Guo,Yunhong Che,Kjeld Pedersen,Daniel‐Ioan Stroe
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:79: 211-221 被引量:35
标识
DOI:10.1016/j.jechem.2023.01.004
摘要

Electrochemical impedance spectroscopy (EIS) is an effective technique for Lithium-ion battery state of health diagnosis, and the impedance spectrum prediction by battery charging curve is expected to enable battery impedance testing during vehicle operation. However, the mechanistic relationship between charging curves and impedance spectrum remains unclear, which hinders the development as well as optimization of EIS-based prediction techniques. In this paper, we predicted the impedance spectrum by the battery charging voltage curve and optimized the input based on electrochemical mechanistic analysis and machine learning. The internal electrochemical relationships between the charging curve, incremental capacity curve, and the impedance spectrum are explored, which improves the physical interpretability for this prediction and helps define the proper partial voltage range for the input for machine learning models. Different machine learning algorithms have been adopted for the verification of the proposed framework based on the sequence-to-sequence predictions. In addition, the predictions with different partial voltage ranges, at different state of charge, and with different training data ratio are evaluated to prove the proposed method have high generalization and robustness. The experimental results show that the proper partial voltage range has high accuracy and converges to the findings of the electrochemical analysis. The predicted errors for impedance spectrum are less than 1.9 mΩ with the proper partial voltage range selected by the corelative analysis of the electrochemical reactions inside the batteries. Even with the voltage range reduced to 3.65–3.75 V, the predictions are still reliable with most RMSEs less than 4 mΩ.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sky完成签到 ,获得积分10
4秒前
热心雁易完成签到,获得积分10
4秒前
4秒前
苞大米发布了新的文献求助10
5秒前
yan发布了新的文献求助10
5秒前
6秒前
俏皮半凡完成签到,获得积分10
6秒前
第八号当铺完成签到,获得积分20
7秒前
三云幻星完成签到,获得积分10
7秒前
7秒前
隐形曼青应助爱吃粑粑采纳,获得10
7秒前
xjh完成签到,获得积分20
8秒前
大个应助俏皮半凡采纳,获得10
10秒前
12秒前
苞大米完成签到,获得积分10
12秒前
12秒前
22222发布了新的文献求助10
12秒前
luerjiang关注了科研通微信公众号
13秒前
马田发布了新的文献求助10
16秒前
李爱国应助Notorious采纳,获得10
17秒前
19秒前
19秒前
卷卷卷完成签到 ,获得积分10
19秒前
xjh关注了科研通微信公众号
19秒前
shuo完成签到,获得积分10
21秒前
22秒前
luerjiang发布了新的文献求助10
25秒前
ZLPY发布了新的文献求助40
26秒前
mhl11应助释棱采纳,获得10
27秒前
28秒前
29秒前
29秒前
调皮小土豆完成签到,获得积分10
29秒前
31秒前
32秒前
32秒前
lvvyy126完成签到,获得积分10
32秒前
tuanheqi应助sky采纳,获得150
33秒前
orixero应助小飞机采纳,获得10
35秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259854
求助须知:如何正确求助?哪些是违规求助? 2901321
关于积分的说明 8315056
捐赠科研通 2570853
什么是DOI,文献DOI怎么找? 1396709
科研通“疑难数据库(出版商)”最低求助积分说明 653554
邀请新用户注册赠送积分活动 631933