Battery impedance spectrum prediction from partial charging voltage curve by machine learning

电阻抗 可解释性 电压 电池(电) 荷电状态 计算机科学 介电谱 航程(航空) 稳健性(进化) 材料科学 电子工程 控制理论(社会学) 电气工程 机器学习 人工智能 工程类 化学 电化学 电极 物理 热力学 功率(物理) 复合材料 物理化学 基因 控制(管理) 生物化学
作者
Jia Guo,Yunhong Che,Kjeld Pedersen,Daniel‐Ioan Stroe
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:79: 211-221 被引量:36
标识
DOI:10.1016/j.jechem.2023.01.004
摘要

Electrochemical impedance spectroscopy (EIS) is an effective technique for Lithium-ion battery state of health diagnosis, and the impedance spectrum prediction by battery charging curve is expected to enable battery impedance testing during vehicle operation. However, the mechanistic relationship between charging curves and impedance spectrum remains unclear, which hinders the development as well as optimization of EIS-based prediction techniques. In this paper, we predicted the impedance spectrum by the battery charging voltage curve and optimized the input based on electrochemical mechanistic analysis and machine learning. The internal electrochemical relationships between the charging curve, incremental capacity curve, and the impedance spectrum are explored, which improves the physical interpretability for this prediction and helps define the proper partial voltage range for the input for machine learning models. Different machine learning algorithms have been adopted for the verification of the proposed framework based on the sequence-to-sequence predictions. In addition, the predictions with different partial voltage ranges, at different state of charge, and with different training data ratio are evaluated to prove the proposed method have high generalization and robustness. The experimental results show that the proper partial voltage range has high accuracy and converges to the findings of the electrochemical analysis. The predicted errors for impedance spectrum are less than 1.9 mΩ with the proper partial voltage range selected by the corelative analysis of the electrochemical reactions inside the batteries. Even with the voltage range reduced to 3.65–3.75 V, the predictions are still reliable with most RMSEs less than 4 mΩ.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zho发布了新的文献求助10
1秒前
2秒前
朝天椒完成签到,获得积分10
2秒前
梁小米发布了新的文献求助20
2秒前
pluto应助baobaobaozi采纳,获得10
3秒前
葛力发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
May应助诺奖就在前方采纳,获得20
4秒前
Sansa333完成签到,获得积分10
4秒前
4秒前
仁爱水之完成签到 ,获得积分10
4秒前
临床耶耶发布了新的文献求助10
4秒前
Jean0603发布了新的文献求助10
5秒前
5秒前
lan发布了新的文献求助20
5秒前
5秒前
5秒前
zx发布了新的文献求助10
6秒前
阿童木完成签到,获得积分10
6秒前
充电宝应助smin采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
犹豫的笑旋完成签到,获得积分10
7秒前
一十六完成签到,获得积分10
7秒前
7秒前
希望天下0贩的0应助TCB采纳,获得10
7秒前
安雯发布了新的文献求助10
8秒前
木悠发布了新的文献求助10
9秒前
9秒前
博修发布了新的文献求助10
9秒前
思思完成签到 ,获得积分10
10秒前
李爱国应助lfz采纳,获得10
10秒前
李爱国应助jiangmin0702采纳,获得10
10秒前
10秒前
千山孤风完成签到,获得积分0
11秒前
果实发布了新的文献求助30
11秒前
隐形曼青应助高兴采文采纳,获得10
11秒前
科研通AI2S应助芋泥波波采纳,获得10
11秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960796
求助须知:如何正确求助?哪些是违规求助? 3506987
关于积分的说明 11133209
捐赠科研通 3239307
什么是DOI,文献DOI怎么找? 1790107
邀请新用户注册赠送积分活动 872145
科研通“疑难数据库(出版商)”最低求助积分说明 803149