Battery impedance spectrum prediction from partial charging voltage curve by machine learning

电阻抗 可解释性 电压 电池(电) 荷电状态 计算机科学 介电谱 航程(航空) 稳健性(进化) 材料科学 电子工程 电气工程 机器学习 工程类 化学 电化学 电极 物理 热力学 功率(物理) 复合材料 物理化学 基因 生物化学
作者
Jia Guo,Yunhong Che,Kjeld Pedersen,Daniel‐Ioan Stroe
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:79: 211-221 被引量:44
标识
DOI:10.1016/j.jechem.2023.01.004
摘要

Electrochemical impedance spectroscopy (EIS) is an effective technique for Lithium-ion battery state of health diagnosis, and the impedance spectrum prediction by battery charging curve is expected to enable battery impedance testing during vehicle operation. However, the mechanistic relationship between charging curves and impedance spectrum remains unclear, which hinders the development as well as optimization of EIS-based prediction techniques. In this paper, we predicted the impedance spectrum by the battery charging voltage curve and optimized the input based on electrochemical mechanistic analysis and machine learning. The internal electrochemical relationships between the charging curve, incremental capacity curve, and the impedance spectrum are explored, which improves the physical interpretability for this prediction and helps define the proper partial voltage range for the input for machine learning models. Different machine learning algorithms have been adopted for the verification of the proposed framework based on the sequence-to-sequence predictions. In addition, the predictions with different partial voltage ranges, at different state of charge, and with different training data ratio are evaluated to prove the proposed method have high generalization and robustness. The experimental results show that the proper partial voltage range has high accuracy and converges to the findings of the electrochemical analysis. The predicted errors for impedance spectrum are less than 1.9 mΩ with the proper partial voltage range selected by the corelative analysis of the electrochemical reactions inside the batteries. Even with the voltage range reduced to 3.65–3.75 V, the predictions are still reliable with most RMSEs less than 4 mΩ.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑点低代萱完成签到,获得积分10
1秒前
甜甜完成签到,获得积分10
1秒前
晴空万里应助黄天采纳,获得10
3秒前
金岁岁完成签到 ,获得积分10
3秒前
3秒前
李健应助不会取名字采纳,获得10
4秒前
米米应助白白采纳,获得30
4秒前
HAHAHA完成签到,获得积分10
4秒前
狐妖发布了新的文献求助10
5秒前
7秒前
情怀应助Wiz111采纳,获得10
7秒前
8秒前
饶天源发布了新的文献求助10
8秒前
刘博虎完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助150
10秒前
zzq完成签到,获得积分10
10秒前
123发布了新的文献求助10
10秒前
小马甲应助小白采纳,获得10
10秒前
11秒前
11秒前
英姑应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
12秒前
Owen应助科研通管家采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
GPTea应助科研通管家采纳,获得150
12秒前
GPTea应助科研通管家采纳,获得50
12秒前
科研通AI6应助科研通管家采纳,获得150
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
13秒前
李健应助科研通管家采纳,获得10
13秒前
是我发布了新的文献求助30
13秒前
张贵虎发布了新的文献求助10
13秒前
SciGPT应助乾雨采纳,获得10
13秒前
高大莺发布了新的文献求助10
14秒前
吴倩完成签到 ,获得积分10
15秒前
myp完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062344
求助须知:如何正确求助?哪些是违规求助? 4286094
关于积分的说明 13356468
捐赠科研通 4103977
什么是DOI,文献DOI怎么找? 2247194
邀请新用户注册赠送积分活动 1252812
关于科研通互助平台的介绍 1183746