Hardness-and-Type Recognition of Different Objects Based on a Novel Porous Graphene Flexible Tactile Sensor Array

触觉传感器 人工智能 模式识别(心理学) 计算机科学 特征(语言学) 传感器阵列 人工神经网络 卷积神经网络 计算机视觉 材料科学 机器学习 机器人 语言学 哲学
作者
Yang Song,Shanna Lv,Feilu Wang,Mingkun Li
出处
期刊:Micromachines [MDPI AG]
卷期号:14 (1): 217-217 被引量:9
标识
DOI:10.3390/mi14010217
摘要

Accurately recognizing the hardness and type of different objects by tactile sensors is of great significance in human–machine interaction. In this paper, a novel porous graphene flexible tactile sensor array with great performance is designed and fabricated, and it is mounted on a two-finger mechanical actuator. This is used to detect various tactile sequence features from different objects by slightly squeezing them by 2 mm. A Residual Network (ResNet) model, with excellent adaptivity and feature extraction ability, is constructed to realize the recognition of 4 hardness categories and 12 object types, based on the tactile time sequence signals collected by the novel sensor array; the average accuracies of hardness and type recognition are 100% and 99.7%, respectively. To further verify the classification ability of the ResNet model for the tactile feature information detected by the sensor array, the Multilayer Perceptron (MLP), LeNet, Multi-Channel Deep Convolutional Neural Network (MCDCNN), and ENCODER models are built based on the same dataset used for the ResNet model. The average recognition accuracies of the 4hardness categories, based on those four models, are 93.6%, 98.3%, 93.3%, and 98.1%. Meanwhile, the average recognition accuracies of the 12 object types, based on the four models, are 94.7%, 98.9%, 85.0%, and 96.4%. All of the results demonstrate that the novel porous graphene tactile sensor array has excellent perceptual performance and the ResNet model can very effectively and precisely complete the hardness and type recognition of objects for the flexible tactile sensor array.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Jaden完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
思源应助含糊的灵雁采纳,获得10
3秒前
buno应助科研通管家采纳,获得10
3秒前
MYFuture应助科研通管家采纳,获得10
4秒前
Cmqq应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
buno应助科研通管家采纳,获得10
4秒前
4秒前
Cmqq应助科研通管家采纳,获得10
4秒前
Hanoi347应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
MYFuture应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
buno应助科研通管家采纳,获得10
4秒前
MYFuture应助科研通管家采纳,获得10
4秒前
spc68应助科研通管家采纳,获得10
4秒前
MYFuture应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
动听的笑南完成签到,获得积分10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
5秒前
5秒前
5秒前
5秒前
gaigaiguo@163完成签到,获得积分10
5秒前
科研通AI6应助孙文霞采纳,获得10
5秒前
尊敬泽洋发布了新的文献求助10
6秒前
walker发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605558
求助须知:如何正确求助?哪些是违规求助? 4690129
关于积分的说明 14862351
捐赠科研通 4701941
什么是DOI,文献DOI怎么找? 2542175
邀请新用户注册赠送积分活动 1507804
关于科研通互助平台的介绍 1472113