清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Hardness-and-Type Recognition of Different Objects Based on a Novel Porous Graphene Flexible Tactile Sensor Array

触觉传感器 人工智能 模式识别(心理学) 计算机科学 特征(语言学) 传感器阵列 人工神经网络 卷积神经网络 计算机视觉 材料科学 机器学习 机器人 语言学 哲学
作者
Yang Song,Shanna Lv,Feilu Wang,Mingkun Li
出处
期刊:Micromachines [MDPI AG]
卷期号:14 (1): 217-217 被引量:9
标识
DOI:10.3390/mi14010217
摘要

Accurately recognizing the hardness and type of different objects by tactile sensors is of great significance in human–machine interaction. In this paper, a novel porous graphene flexible tactile sensor array with great performance is designed and fabricated, and it is mounted on a two-finger mechanical actuator. This is used to detect various tactile sequence features from different objects by slightly squeezing them by 2 mm. A Residual Network (ResNet) model, with excellent adaptivity and feature extraction ability, is constructed to realize the recognition of 4 hardness categories and 12 object types, based on the tactile time sequence signals collected by the novel sensor array; the average accuracies of hardness and type recognition are 100% and 99.7%, respectively. To further verify the classification ability of the ResNet model for the tactile feature information detected by the sensor array, the Multilayer Perceptron (MLP), LeNet, Multi-Channel Deep Convolutional Neural Network (MCDCNN), and ENCODER models are built based on the same dataset used for the ResNet model. The average recognition accuracies of the 4hardness categories, based on those four models, are 93.6%, 98.3%, 93.3%, and 98.1%. Meanwhile, the average recognition accuracies of the 12 object types, based on the four models, are 94.7%, 98.9%, 85.0%, and 96.4%. All of the results demonstrate that the novel porous graphene tactile sensor array has excellent perceptual performance and the ResNet model can very effectively and precisely complete the hardness and type recognition of objects for the flexible tactile sensor array.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紫熊完成签到,获得积分10
4秒前
11秒前
regene完成签到,获得积分10
15秒前
tufei完成签到,获得积分10
16秒前
36秒前
77发布了新的文献求助10
41秒前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
科研搬运工完成签到,获得积分10
1分钟前
假萌完成签到,获得积分10
1分钟前
丘比特应助77采纳,获得10
2分钟前
2分钟前
铁妹儿完成签到 ,获得积分10
3分钟前
归尘应助科研通管家采纳,获得10
3分钟前
Akim应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
77发布了新的文献求助10
4分钟前
归尘应助科研通管家采纳,获得10
5分钟前
5分钟前
6分钟前
YepbingCHOI发布了新的文献求助10
6分钟前
Derek完成签到,获得积分0
6分钟前
房天川完成签到 ,获得积分10
6分钟前
竹桃完成签到 ,获得积分10
6分钟前
刘刘完成签到 ,获得积分10
6分钟前
77发布了新的文献求助10
7分钟前
李爱国应助英勇的阑悦采纳,获得10
7分钟前
7分钟前
归尘应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
7分钟前
科研12345完成签到 ,获得积分10
9分钟前
归尘应助科研通管家采纳,获得10
9分钟前
斯文败类应助科研通管家采纳,获得10
9分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307460
求助须知:如何正确求助?哪些是违规求助? 2941053
关于积分的说明 8500336
捐赠科研通 2615463
什么是DOI,文献DOI怎么找? 1428912
科研通“疑难数据库(出版商)”最低求助积分说明 663595
邀请新用户注册赠送积分活动 648494