Hardness-and-Type Recognition of Different Objects Based on a Novel Porous Graphene Flexible Tactile Sensor Array

触觉传感器 人工智能 模式识别(心理学) 计算机科学 特征(语言学) 传感器阵列 人工神经网络 卷积神经网络 计算机视觉 材料科学 机器学习 机器人 语言学 哲学
作者
Yang Song,Shanna Lv,Feilu Wang,Mingkun Li
出处
期刊:Micromachines [Multidisciplinary Digital Publishing Institute]
卷期号:14 (1): 217-217 被引量:9
标识
DOI:10.3390/mi14010217
摘要

Accurately recognizing the hardness and type of different objects by tactile sensors is of great significance in human–machine interaction. In this paper, a novel porous graphene flexible tactile sensor array with great performance is designed and fabricated, and it is mounted on a two-finger mechanical actuator. This is used to detect various tactile sequence features from different objects by slightly squeezing them by 2 mm. A Residual Network (ResNet) model, with excellent adaptivity and feature extraction ability, is constructed to realize the recognition of 4 hardness categories and 12 object types, based on the tactile time sequence signals collected by the novel sensor array; the average accuracies of hardness and type recognition are 100% and 99.7%, respectively. To further verify the classification ability of the ResNet model for the tactile feature information detected by the sensor array, the Multilayer Perceptron (MLP), LeNet, Multi-Channel Deep Convolutional Neural Network (MCDCNN), and ENCODER models are built based on the same dataset used for the ResNet model. The average recognition accuracies of the 4hardness categories, based on those four models, are 93.6%, 98.3%, 93.3%, and 98.1%. Meanwhile, the average recognition accuracies of the 12 object types, based on the four models, are 94.7%, 98.9%, 85.0%, and 96.4%. All of the results demonstrate that the novel porous graphene tactile sensor array has excellent perceptual performance and the ResNet model can very effectively and precisely complete the hardness and type recognition of objects for the flexible tactile sensor array.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一碗冷的粥完成签到,获得积分20
刚刚
酷炫的尔丝完成签到 ,获得积分10
刚刚
bkagyin应助哩蒜呐采纳,获得10
1秒前
无花果应助淡定荧采纳,获得10
1秒前
1秒前
褶皱完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
cc发布了新的文献求助20
5秒前
毛毛妈完成签到,获得积分10
5秒前
陈曦发布了新的文献求助10
6秒前
runtang完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
9秒前
笙霜半夏发布了新的文献求助10
9秒前
解松发布了新的文献求助10
10秒前
只爱吃肠粉完成签到,获得积分10
11秒前
风清扬应助义气的钻石采纳,获得10
11秒前
doiwanado发布了新的文献求助10
11秒前
Lucky完成签到,获得积分10
12秒前
12秒前
sxx完成签到,获得积分10
12秒前
12秒前
顾矜应助怕孤单的破茧采纳,获得10
12秒前
14秒前
可爱的函函应助修辛采纳,获得10
14秒前
如意枫叶发布了新的文献求助10
14秒前
PAN发布了新的文献求助30
14秒前
15秒前
15秒前
你雕姐完成签到,获得积分10
16秒前
lc完成签到,获得积分10
16秒前
lishihao发布了新的文献求助10
16秒前
Xbax完成签到,获得积分20
17秒前
科目三应助杨鹏飞123454采纳,获得10
17秒前
dsjlove发布了新的文献求助10
19秒前
灵巧妙柏发布了新的文献求助10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989589
求助须知:如何正确求助?哪些是违规求助? 3531795
关于积分的说明 11254881
捐赠科研通 3270329
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176