Hardness-and-Type Recognition of Different Objects Based on a Novel Porous Graphene Flexible Tactile Sensor Array

触觉传感器 人工智能 模式识别(心理学) 计算机科学 特征(语言学) 传感器阵列 人工神经网络 卷积神经网络 计算机视觉 材料科学 机器学习 机器人 语言学 哲学
作者
Yang Song,Shanna Lv,Feilu Wang,Mingkun Li
出处
期刊:Micromachines [Multidisciplinary Digital Publishing Institute]
卷期号:14 (1): 217-217 被引量:9
标识
DOI:10.3390/mi14010217
摘要

Accurately recognizing the hardness and type of different objects by tactile sensors is of great significance in human–machine interaction. In this paper, a novel porous graphene flexible tactile sensor array with great performance is designed and fabricated, and it is mounted on a two-finger mechanical actuator. This is used to detect various tactile sequence features from different objects by slightly squeezing them by 2 mm. A Residual Network (ResNet) model, with excellent adaptivity and feature extraction ability, is constructed to realize the recognition of 4 hardness categories and 12 object types, based on the tactile time sequence signals collected by the novel sensor array; the average accuracies of hardness and type recognition are 100% and 99.7%, respectively. To further verify the classification ability of the ResNet model for the tactile feature information detected by the sensor array, the Multilayer Perceptron (MLP), LeNet, Multi-Channel Deep Convolutional Neural Network (MCDCNN), and ENCODER models are built based on the same dataset used for the ResNet model. The average recognition accuracies of the 4hardness categories, based on those four models, are 93.6%, 98.3%, 93.3%, and 98.1%. Meanwhile, the average recognition accuracies of the 12 object types, based on the four models, are 94.7%, 98.9%, 85.0%, and 96.4%. All of the results demonstrate that the novel porous graphene tactile sensor array has excellent perceptual performance and the ResNet model can very effectively and precisely complete the hardness and type recognition of objects for the flexible tactile sensor array.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
丘比特应助哇哦采纳,获得10
1秒前
1秒前
钟D摆发布了新的文献求助10
2秒前
horsam发布了新的文献求助10
2秒前
2秒前
2秒前
小舒完成签到,获得积分10
2秒前
3秒前
轻松的雨旋完成签到,获得积分10
3秒前
3秒前
科研通AI5应助丫丫采纳,获得10
4秒前
Ava应助seven采纳,获得10
4秒前
天天快乐应助annoraz采纳,获得30
4秒前
5秒前
季思锐发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
末末完成签到,获得积分10
6秒前
wanci应助lihanyan666采纳,获得10
7秒前
研究生发布了新的文献求助10
7秒前
海棠未眠完成签到,获得积分10
7秒前
7秒前
斯文败类应助西哈哈采纳,获得10
8秒前
李雨芯关注了科研通微信公众号
8秒前
领导范儿应助西哈哈采纳,获得10
8秒前
wanci应助jun1357采纳,获得10
8秒前
8秒前
8秒前
8秒前
早睡早起身体棒完成签到,获得积分10
9秒前
JamesPei应助xiaoxiao采纳,获得10
9秒前
五月发布了新的文献求助10
9秒前
9秒前
左耳钉完成签到,获得积分0
9秒前
10秒前
丿骨王完成签到,获得积分20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193549
求助须知:如何正确求助?哪些是违规求助? 4376036
关于积分的说明 13627965
捐赠科研通 4230855
什么是DOI,文献DOI怎么找? 2320601
邀请新用户注册赠送积分活动 1318989
关于科研通互助平台的介绍 1269260