Tensor Ring Discriminant Analysis used for Dimension Reduction of Remote Sensing Feature Tensor

线性判别分析 张量(固有定义) 模式识别(心理学) 判别式 降维 特征提取 维数(图论) 人工智能 特征(语言学) 戒指(化学) 结构张量 计算机科学 数学 几何学 纯数学 图像(数学) 化学 语言学 哲学 有机化学
作者
Tong Gao,Lingjia Gu,Hao Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-17
标识
DOI:10.1109/tgrs.2024.3389981
摘要

Effective feature dimension reduction (DR) from high-dimensional remote sensing images has been a significant challenge for remote sensing object recognition. Directly adopting vector-based DR method ignores remote sensing data's inherent tensor structure information, leading to the undersample problem. Additionally, the existing tensor-based DR methods either require an exponential storage space increasing with the orders of the input tensor (i.e., Tucker-form methods) or are dependent on the permutation of tensor modes limiting the discriminant capability of the DR results (i.e., tensor train form methods). To conquer these problems, unlike the existing Tucker or tensor train form feature representation, the novel tensor ring (TR) subspace learning theory is proposed systematically and rigorously to extend the traditional vector and tensor subspace learning to the TR subspace. Then, by embedding Fisher criterion into TR subspace, the Tensor Ring Discriminant Analysis (TRDA) is proposed to achieve DR for remote sensing tensors with flexible tensor rank and lower storage cost. To train TRDA under different computing resources, non-recursive and exact TRDA training methods are presented to obtain the global suboptimal and local optimal solutions, respectively. Furthermore, to adapt to the case of multisource data and unlabeled data, the multiple TRDA (MTRDA) and semi-supervised TRDA (S-TRDA) are further proposed to refine multisource features in multiple TR subspaces and absorb useful information using adaptive scatter tensor, respectively. Using optical, hyperspectral, and SAR datasets, experimental results demonstrate that the proposed TRDA can obtain better recognition accuracy and smaller storage cost than the typical vector and tensor-based DR methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
ice完成签到,获得积分10
1秒前
善良的数据线完成签到,获得积分10
2秒前
FashionBoy应助研友_8yX0xZ采纳,获得10
5秒前
研友_VZG7GZ应助满天星采纳,获得10
6秒前
6秒前
七七完成签到,获得积分20
9秒前
youchgg完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
11秒前
daxiooo11发布了新的文献求助10
12秒前
12秒前
yxt发布了新的文献求助10
13秒前
16秒前
De.发布了新的文献求助10
16秒前
和十四条发布了新的文献求助10
16秒前
17秒前
17秒前
20秒前
秀丽凝安发布了新的文献求助10
21秒前
和十四条完成签到,获得积分10
21秒前
瀚泛应助程风破浪采纳,获得10
22秒前
科研通AI5应助mushini采纳,获得10
22秒前
lutos发布了新的文献求助10
24秒前
look完成签到,获得积分10
24秒前
爱咋咋地完成签到,获得积分10
24秒前
不爱喝可乐完成签到,获得积分20
24秒前
科研通AI5应助gao采纳,获得10
24秒前
苏卿应助RUIT采纳,获得10
25秒前
26秒前
情怀应助独特的易形采纳,获得10
26秒前
26秒前
yuyuyuan发布了新的文献求助10
26秒前
宇心完成签到,获得积分10
26秒前
28秒前
28秒前
xyz完成签到,获得积分10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Examining the factors affecting users' payment intention of video knowledge products 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3698502
求助须知:如何正确求助?哪些是违规求助? 3249484
关于积分的说明 9864063
捐赠科研通 2961099
什么是DOI,文献DOI怎么找? 1623947
邀请新用户注册赠送积分活动 768898
科研通“疑难数据库(出版商)”最低求助积分说明 741954