Eigen-CNN: Eigenimages Plus Eigennoise Level Maps Guided Network for Hyperspectral Image Denoising

高光谱成像 人工智能 计算机科学 降噪 模式识别(心理学) 图像去噪 遥感 图像(数学) 计算机视觉 地质学
作者
Lina Zhuang,Michael K. Ng,Lianru Gao,Zhicheng Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-18 被引量:23
标识
DOI:10.1109/tgrs.2024.3379199
摘要

In recent years, neural network-based methods have shown promising results in hyperspectral image (HSI) denoising area. Real HSIs exhibit substantial variations in noise distribution due to various factors such as different imaging techniques, camera variations, imaging environments, and hardware aging. In this paper, we develop an eigenimage plus eigennoise level map guided convolutional neural network for HSI denoising. Our main idea is to perform eigendecomposition on HSIs, utilize the low-rank property of HSIs in the spectral dimension and approximate the spectral vectors in a low-dimensional orthogonal subspace, where representation coefficients are called eigenimages. Besides eigenimages, we make use of estimated eigennoise level map as an input to guide the network for denoising. The proposed network can be constructed without restriction in the number of eigencomponents by using all eigenimages and eigennoise level maps of training noisy-clean pairs. In the inference part, the trained network can be used to remove noise in observed eigenimages without restriction in the number of eigencomponents, and an underlying clean image HSI can be estimated by performing orthogonal projection back. Experimental results on both simulated and real HSIs demonstrate the effectiveness of our trained Eigen-CNN compared with state-of-the-art HSI denoising methods. A MATLAB demo of this work is available at https://github.com/LinaZhuang/HSI-denoiser-Eigen-CNN for the sake of reproducibility.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bluesiryao发布了新的文献求助200
1秒前
唐一完成签到,获得积分10
1秒前
1秒前
wenwooo完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
拓小八完成签到,获得积分0
2秒前
cy123完成签到,获得积分10
2秒前
傲娇千亦发布了新的文献求助10
2秒前
3秒前
刘卓完成签到 ,获得积分10
3秒前
3秒前
3秒前
3秒前
Fionaaaa发布了新的文献求助30
3秒前
mini发布了新的文献求助10
4秒前
小马甲应助黛宝采纳,获得10
4秒前
4秒前
4秒前
lsf完成签到,获得积分10
5秒前
SJ完成签到,获得积分10
5秒前
当当完成签到,获得积分10
5秒前
5秒前
小宇等日落完成签到,获得积分10
6秒前
温婉的谷菱完成签到,获得积分10
6秒前
6秒前
wgs发布了新的文献求助10
7秒前
7秒前
蓝精灵发布了新的文献求助30
7秒前
111完成签到,获得积分10
8秒前
8秒前
哈尼酱完成签到 ,获得积分10
8秒前
Orange应助Sky采纳,获得10
8秒前
8秒前
别绪叁仟发布了新的文献求助10
9秒前
9秒前
安静的剑发布了新的文献求助10
9秒前
9秒前
ZSmile完成签到,获得积分10
9秒前
kk完成签到 ,获得积分10
10秒前
凶狠的电话完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545721
求助须知:如何正确求助?哪些是违规求助? 4631761
关于积分的说明 14622099
捐赠科研通 4573427
什么是DOI,文献DOI怎么找? 2507524
邀请新用户注册赠送积分活动 1484223
关于科研通互助平台的介绍 1455530