Predicting transcriptional responses to novel chemical perturbations using deep generative model

生成语法 生成模型 计算机科学 人工智能 计算生物学 认知科学 心理学 生物
作者
Yi Zhao,Xiaoning Qi,Lianhe Zhao,Chenyu Tian,Yueyue Li,Runsheng Chen,Shengyong Yang
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3917469/v1
摘要

Abstract Understanding transcriptional responses to chemical perturbations is central for drug discovery, but exhaustive experimental high-throughput screening of disease and compound combinations is unfeasible. To overcome this limitation, here we present a perturbation-conditioned deep generative model named PRnet for predicting transcriptional responses to novel chemical perturbations that were never experimentally perturbed at bulk and single-cell levels. Evaluation indicated that PRnet outperformed alternative methods in predicting responses across novel compounds, pathways, and cell lines. PRnet enables gene-level response interpretation and novel compounds screening for diseases based on gene signatures. PRnet further identified and experimentally tested novel compounds candidates against small cell lung cancer and colorectal cancer. Lastly, PRnet generated a large-scale integration atlas of perturbation profiles, covering 88 cell lines and 52 tissues perturbed by various screening compound libraries. PRnet provided a robust and scalable candidate recommendation workflow and has successfully recommended drug candidates for 233 different diseases based on the atlas. Overall, PRnet is an effective and valuable tool for cell- and gene-based therapeutics screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
清爽老九应助科研通管家采纳,获得20
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
greenPASS666发布了新的文献求助10
1秒前
涂欣桐应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
secbox完成签到,获得积分10
2秒前
刘哈哈发布了新的文献求助30
2秒前
xyzdmmm完成签到,获得积分10
3秒前
3秒前
欢呼冰岚发布了新的文献求助30
4秒前
xiongdi521发布了新的文献求助10
4秒前
honeybee完成签到,获得积分10
6秒前
兔子完成签到,获得积分10
7秒前
汉关发布了新的文献求助10
7秒前
NexusExplorer应助WZ0904采纳,获得10
8秒前
xiongdi521完成签到,获得积分10
9秒前
9秒前
ding应助奋斗的小林采纳,获得10
9秒前
超帅曼柔完成签到,获得积分10
9秒前
酷波er应助xg采纳,获得10
10秒前
听话的亦瑶完成签到,获得积分10
11秒前
龙江游侠完成签到,获得积分10
11秒前
小蘑菇应助honeybee采纳,获得10
12秒前
Agernon应助超帅曼柔采纳,获得10
12秒前
13秒前
jella完成签到,获得积分10
14秒前
一网小海蜇完成签到 ,获得积分10
14秒前
17秒前
17秒前
Langsam完成签到,获得积分10
18秒前
JamesPei应助嘻嘻采纳,获得10
18秒前
mo72090完成签到,获得积分10
18秒前
poison完成签到 ,获得积分10
19秒前
俏皮半烟发布了新的文献求助10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849