Predicting transcriptional responses to novel chemical perturbations using deep generative model

生成语法 生成模型 计算机科学 人工智能 计算生物学 认知科学 心理学 生物
作者
Yi Zhao,Xiaoning Qi,Lianhe Zhao,Chenyu Tian,Yueyue Li,Runsheng Chen,Shengyong Yang
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3917469/v1
摘要

Abstract Understanding transcriptional responses to chemical perturbations is central for drug discovery, but exhaustive experimental high-throughput screening of disease and compound combinations is unfeasible. To overcome this limitation, here we present a perturbation-conditioned deep generative model named PRnet for predicting transcriptional responses to novel chemical perturbations that were never experimentally perturbed at bulk and single-cell levels. Evaluation indicated that PRnet outperformed alternative methods in predicting responses across novel compounds, pathways, and cell lines. PRnet enables gene-level response interpretation and novel compounds screening for diseases based on gene signatures. PRnet further identified and experimentally tested novel compounds candidates against small cell lung cancer and colorectal cancer. Lastly, PRnet generated a large-scale integration atlas of perturbation profiles, covering 88 cell lines and 52 tissues perturbed by various screening compound libraries. PRnet provided a robust and scalable candidate recommendation workflow and has successfully recommended drug candidates for 233 different diseases based on the atlas. Overall, PRnet is an effective and valuable tool for cell- and gene-based therapeutics screening.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
土土b发布了新的文献求助10
刚刚
hqq发布了新的文献求助10
刚刚
无趣发布了新的文献求助30
刚刚
刚刚
酷波er应助追光采纳,获得10
1秒前
开朗发卡完成签到,获得积分10
2秒前
Lucas应助蓝淡定采纳,获得10
2秒前
Amosummer发布了新的文献求助10
2秒前
梓翔发布了新的文献求助10
2秒前
3秒前
4秒前
灵巧的嚣发布了新的文献求助100
4秒前
可可应助kong采纳,获得200
4秒前
大致若鱼应助hbzyydx46采纳,获得10
4秒前
dunk芒果发布了新的文献求助10
5秒前
jungle完成签到,获得积分10
5秒前
campus完成签到,获得积分10
5秒前
kissssp完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
Lucas应助个性的大船采纳,获得10
7秒前
Shan完成签到,获得积分10
7秒前
kenshin发布了新的文献求助10
8秒前
8秒前
搜集达人应助做好胶水采纳,获得10
8秒前
浮浮世世应助Pansy527采纳,获得30
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
科研通AI6应助芽芽豆采纳,获得10
10秒前
刘鑫慧完成签到 ,获得积分10
10秒前
科目三应助2t采纳,获得10
10秒前
晓鸭的平凡世界完成签到,获得积分10
11秒前
chen发布了新的文献求助10
11秒前
11秒前
JamesPei应助奋斗花生采纳,获得10
12秒前
酷酷的盼海完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531309
求助须知:如何正确求助?哪些是违规求助? 4620136
关于积分的说明 14571914
捐赠科研通 4559695
什么是DOI,文献DOI怎么找? 2498561
邀请新用户注册赠送积分活动 1478526
关于科研通互助平台的介绍 1449957