Vibrational resonance: A review

共振(粒子物理) 非线性共振 非线性系统 计算机科学 随机共振 信号(编程语言) 物理 统计物理学 噪音(视频) 人工智能 原子物理学 量子力学 图像(数学) 程序设计语言
作者
Jianhua Yang,S. Rajasekar,Miguel A. F. Sanjuán
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.1016/j.physrep.2024.03.001
摘要

Over the past two decades, vibrational resonance has garnered significant interest and evolved into a prominent research field. Classical vibrational resonance examines the response of a nonlinear system excited by two signals: a weak, slowly varying characteristic signal, and a fast-varying auxiliary signal. The characteristic signal operates on a much longer time scale than the auxiliary signal. Through the cooperation of the nonlinear system and these two excitations, the faint input can be substantially amplified, showcasing the constructive role of the fast-varying signal. Since its inception, vibrational resonance has been extensively studied across various disciplines, including physics, mathematics, biology, neuroscience, laser science, chemistry, and engineering. Here, we delve into a detailed discussion of vibrational resonance and the most recent advances, beginning with an introduction to characteristic signals commonly used in its study. Furthermore, we compile numerous nonlinear models where vibrational resonance has been observed to enhance readers' understanding and provide a basis for comparison. Subsequently, we present the metrics used to quantify vibrational resonance, as well as offer a theoretical formulation. This encompasses the method of direct separation of motions, linear and nonlinear vibrational resonance, re-scaled vibrational resonance, ultrasensitive vibrational resonance, and the role of noise in vibrational resonance. Later, we showcase two practical applications of vibrational resonance: one in image processing and the other in fault diagnosis. This presentation offers a comprehensive and versatile overview of vibrational resonance, exploring various facets and highlighting promising avenues for future research in both theory and engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
陈pc完成签到,获得积分10
2秒前
贪玩行云完成签到,获得积分10
2秒前
Singularity应助Desserts采纳,获得10
2秒前
笑啦啦完成签到,获得积分10
3秒前
3秒前
3秒前
田様应助游手浩闲采纳,获得10
4秒前
打打应助兔子采纳,获得10
5秒前
彭于晏应助ccl采纳,获得10
5秒前
lalala发布了新的文献求助10
5秒前
半山发布了新的文献求助10
7秒前
ZSWAA发布了新的文献求助10
8秒前
9秒前
suyk发布了新的文献求助10
10秒前
在水一方应助欣喜战斗机采纳,获得10
11秒前
123发布了新的文献求助10
11秒前
11秒前
遥远的尧应助房天川采纳,获得10
12秒前
12秒前
13秒前
limon完成签到,获得积分10
14秒前
15秒前
游手浩闲完成签到,获得积分10
15秒前
科研通AI2S应助ZSWAA采纳,获得10
16秒前
17秒前
四天垂发布了新的文献求助10
17秒前
lalala完成签到,获得积分10
17秒前
18秒前
烟花应助小马能发sci采纳,获得10
18秒前
科研通AI2S应助fifteen采纳,获得10
18秒前
jdsfyr发布了新的文献求助10
19秒前
19秒前
20秒前
21秒前
23秒前
半山完成签到,获得积分10
24秒前
在水一方应助高贵宝莹采纳,获得10
25秒前
不配.应助cui采纳,获得20
25秒前
26秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157798
求助须知:如何正确求助?哪些是违规求助? 2809143
关于积分的说明 7880515
捐赠科研通 2467613
什么是DOI,文献DOI怎么找? 1313602
科研通“疑难数据库(出版商)”最低求助积分说明 630467
版权声明 601943