已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Integrating Biofeedback and Artificial Intelligence into eXtended Reality Training Scenarios: A Systematic Literature Review

生物反馈 心理学 系统回顾 计算机科学 培训(气象学) 管理科学 人工智能 人机交互 工程类 梅德林 物理 精神科 气象学 政治学 法学
作者
Karen Blackmore,Shamus P. Smith,Jacqueline D. Bailey,Benjamin Krynski
出处
期刊:Simulation & Gaming [SAGE]
卷期号:55 (3): 445-478 被引量:2
标识
DOI:10.1177/10468781241236688
摘要

Background The addition of biofeedback and artificial intelligence (AI) in simulation training and serious games has shown promising results in improving the effectiveness of training and can lead to increased engagement, motivation, and retention of information. This systematic literature review explores the integration of biofeedback and artificial intelligence into eXtended reality (XR) training scenarios and is the first review to provide a consolidated overview of applied biofeedback and AI technologies in this area. Method This review was conducted using keywords related to biofeedback, AI, XR, and training and included papers that: contained the use of biofeedback and AI in XR training scenarios; reported on at least one outcome related to training effectiveness; were published in English; were peer-reviewed; date from 1 January 2016 – 7 February 2022. Results The results indicate that many studies collect two or more biosignals using a single biosensing device. This is particularly relevant in applied settings, where ease of use and minimal interference in training/education activities is desired. Also, that light, portable devices such as wrist bands, wireless straps, or headbands are preferred. Additionally, eye tracking, electrodermal activity (EDA), and photoplethysmograms (PPG) present as particularly useful biomarkers of stress and/or cognitive load in XR training contexts. A wide variety of machine learning (ML) approaches were used to support biofeedback systems in XR environments. However, a limited number of studies employed real-time analysis of biosignals (just 1% of studies) which indicates current challenges in implementing such systems. Conclusion The majority of papers meeting the selection criteria were from the fields of education and healthcare. Further research in other domains, such as defense and general industry, is needed to gain a comprehensive understanding of the potential for biofeedback and AI integration in XR training scenarios used in these domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iorpi完成签到,获得积分10
1秒前
魂智光发布了新的文献求助10
2秒前
5秒前
段月漪完成签到 ,获得积分10
6秒前
WQ完成签到,获得积分10
10秒前
HYT完成签到 ,获得积分10
10秒前
Lin.隽发布了新的文献求助50
11秒前
害羞龙猫完成签到 ,获得积分10
14秒前
Lin.隽完成签到,获得积分10
18秒前
熊天天完成签到,获得积分10
20秒前
酷123456完成签到,获得积分10
21秒前
Jonathan完成签到,获得积分10
22秒前
NN123完成签到 ,获得积分10
23秒前
科研通AI2S应助文刀采纳,获得10
26秒前
寻舟者完成签到,获得积分10
26秒前
27秒前
35秒前
英俊的铭应助LINbiaozhi采纳,获得10
36秒前
张亚博完成签到 ,获得积分10
38秒前
朱宸发布了新的文献求助10
40秒前
明毓发布了新的文献求助10
41秒前
孤独天薇完成签到 ,获得积分10
47秒前
下午好完成签到 ,获得积分10
47秒前
科研通AI2S应助文刀采纳,获得10
47秒前
奥特斌完成签到 ,获得积分10
50秒前
所所应助科研通管家采纳,获得30
50秒前
无花果应助科研通管家采纳,获得10
50秒前
搜集达人应助科研通管家采纳,获得10
50秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
Siqi完成签到,获得积分10
51秒前
53秒前
科目三应助Siqi采纳,获得10
56秒前
56秒前
醉倒天瓢完成签到 ,获得积分10
1分钟前
大个应助月亮打盹儿采纳,获得10
1分钟前
圆圆完成签到 ,获得积分10
1分钟前
xzy998应助文刀采纳,获得10
1分钟前
Twistti完成签到 ,获得积分10
1分钟前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3130036
求助须知:如何正确求助?哪些是违规求助? 2780836
关于积分的说明 7750316
捐赠科研通 2436079
什么是DOI,文献DOI怎么找? 1294525
科研通“疑难数据库(出版商)”最低求助积分说明 623703
版权声明 600570