材料科学
超级电容器
复合数
离子
纳米技术
离子运输机
化学工程
光电子学
复合材料
电容
电极
有机化学
化学
物理化学
工程类
作者
Chunxia Yan,Fangyue Cheng,Jie Guan,Zhimao Li,Can Wang,Nannan Chen,Chunzu Cheng,Feijun Wang,Ziqiang Shao
标识
DOI:10.1021/acsami.3c19037
摘要
The weak stiffness, huge thickness, and low specific capacitance of commonly utilized flexible supercapacitors hinder their great electrochemical performance. Learning from a biomimetic interface strategy, we design flexible film electrodes based on functional intercalated structures with excellent electrochemical properties and mechanical flexibility. A composite film with high strength and flexibility is created using graphene (reduced graphene oxide (rGO)) as the plane layer, layered double metal hydroxide (LDH) as the support layer, and cellulose nanofiber (CNF) as the connection agent and flexible agent. The interlayer height can be adjusted by the ion concentration. The highly interconnected network enables excellent electron and ion transport channels, facilitating rapid ion diffusion and redox reactions. Moreover, the high flexibility and mechanical properties of the film achieve multiple folding and bending. The CNF-rGO-NiCoLDH film electrode exhibits high capacitance performance (3620.5 mF cm
科研通智能强力驱动
Strongly Powered by AbleSci AI