Prediction of durability of reinforced concrete based on hybrid-Bp neural network

耐久性 人工神经网络 结构工程 计算机科学 材料科学 复合材料 工程类 人工智能
作者
Qiong Feng,Xiaoyang Xie,Penghui Wang,Hongxia Qiao,Yunsheng Zhang,Yunxia Ma
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:425: 136091-136091 被引量:3
标识
DOI:10.1016/j.conbuildmat.2024.136091
摘要

Mix proportion design has a significant influence on the durability of reinforced concrete (RC). Conventional simple equations encounter challenges in effectively guiding the enhancement of durability in the design process. To address this issue, a backpropagation neural network (BPNN) model with a topological structure of 6–16–2 is devised to build a prediction model for RC durability, offering both forward design and reverse guidance for determining optimal mix proportion. Moreover, the model is optimized by the Bat Algorithm (BA), Ant Colony Optimization Algorithm (ACO), and Particle Swarm Optimization (PSO) Algorithm. The input layer parameters of the model consist the water-binder ratio and the quantity of cement, coarse aggregate, river sand (RS), fly ash (FA), slag, while the output layer parameters include the failure time for corrosion current density of reinforcement (T1) and the failure time for concrete damage degree (T2). The dataset for the model comprises 100*2 sets, which are divided into 70*2 sets for training data, 15*2 sets for validation data, and 15*2 sets for testing data. The relationship between the experimental raw materials and the durability of RC was determined through correlation analysis, and comparative analysis was conducted on the durability evaluation indices for RC. The results indicate a positive correlation between cement content and the durability of RC, whereas the content of RS, coarse aggregate, FA and slag, and water-binder ratio exhibit negative correlation with concrete durability. Among the RC groups, the A3 group demonstrated the highest performance, and the D group stood out as the optimal mineral admixture group. Utilizing the PSO-BPNN model, the following performance indices were predicted for T1: R2=0.850, MAE=38.14, MAPE=0.094, RMSE=47.218, and for T2: R2=0.872, MAE=34.541, MAPE=0.071, RMSE=42.355. Consequently, the PSO-BPNN model demonstrates the highest accuracy in predicting the correlation between concrete mix proportions and the durability of RC, thereby offering valuable guidance for the mix proportion design of RC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Moonboss完成签到 ,获得积分10
刚刚
fml发布了新的文献求助10
3秒前
桐桐应助chichi采纳,获得10
3秒前
4秒前
沂静发布了新的文献求助10
4秒前
kaneki完成签到,获得积分10
5秒前
小马甲应助...采纳,获得10
5秒前
好困应助52cc000采纳,获得20
6秒前
6秒前
研友_VZG7GZ应助LZH采纳,获得10
7秒前
8秒前
waterimagic2发布了新的文献求助10
9秒前
完美世界应助积极断缘采纳,获得10
9秒前
10秒前
didi完成签到 ,获得积分10
10秒前
Billy发布了新的文献求助10
10秒前
11秒前
coc发布了新的文献求助10
11秒前
一别如斯完成签到,获得积分10
12秒前
酱圤发布了新的文献求助30
12秒前
思源应助小文cremen采纳,获得10
12秒前
Mint发布了新的文献求助10
13秒前
高高诗柳发布了新的文献求助10
14秒前
14秒前
15秒前
一别如斯发布了新的文献求助10
16秒前
coc完成签到,获得积分20
17秒前
17秒前
17秒前
17秒前
wq完成签到 ,获得积分10
18秒前
eternal发布了新的文献求助10
18秒前
alai发布了新的文献求助10
18秒前
Charail发布了新的文献求助30
18秒前
19秒前
ZHX完成签到 ,获得积分10
19秒前
科研通AI2S应助山花鱼采纳,获得10
19秒前
天天快乐应助vivid采纳,获得10
19秒前
大个应助菜鸟采纳,获得10
19秒前
似冲完成签到,获得积分10
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149155
求助须知:如何正确求助?哪些是违规求助? 2800230
关于积分的说明 7839164
捐赠科研通 2457781
什么是DOI,文献DOI怎么找? 1308112
科研通“疑难数据库(出版商)”最低求助积分说明 628408
版权声明 601706