清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

SC-Net: A new strip convolutional network model for rice seedling and weed segmentation in paddy field

杂草 水田 背景(考古学) 编码器 联营 块(置换群论) 领域(数学) 农学 模式识别(心理学) 卷积神经网络 卷积(计算机科学) 特征(语言学) 分割 骨干网 数学 人工智能 人工神经网络 生物 计算机科学 电信 几何学 纯数学 古生物学 哲学 语言学 操作系统
作者
Juan Liao,Minhui Chen,Kai Zhang,Huiyu Zhou,Yu Zou,Wei Xiong,Shun Zhang,Fuming Kuang,Dequan Zhu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:220: 108862-108862 被引量:5
标识
DOI:10.1016/j.compag.2024.108862
摘要

Weeds are among the major factors that could harm the yield and quality of rice. Accurately recognizing and localizing crops and weeds are essential for realizing automated weed management in precision agriculture. Semantic segmentation techniques based on deep learning have the capability to automatically discern various types of objects. However, effectively extracting image features to distinguish between rice seedlings and weeds, which often exhibit similar texture characteristics and size disparities, remains a challenging issue in the field. In view of this, a new strip convolutional network model named SC-Net is proposed in this paper, where UNet is used as the backbone network. Based on the idea of multi-scale feature fusion, the parallel multilevel convolution block (PMCB) and strip multilevel convolution block (SMCB) are constructed to design the encoder and decoder of the segmentation network, enabling the extraction of the salient features of seedlings and weeds. Specifically, the SMCB is composed of multi-scale strip convolutions, which effectively widens the receptive field of the convolution layer while minimizing computational costs, and incorporates a long and narrow shape enhancement network to identify the characteristics of slender rice seedling leaves. To adaptively fuse different level features, the attention feature fusion module (AFF) is designed to establish a long skip connection between the encoder and decoder of the network. This module aggregates global and local context information from low-level and high-level features through global spatial pooling and dot product convolution. Moreover, the strip pooling attention module (SPAM) is introduced between the encoder and decoder stages to enhance the network's perception of the precise positional information of the target area, thus further optimizing the segmentation results. The experimental results show that SC-Net achieved MIOU scores of 87.48 % and 89.00 % on the self-built rice seedling and public agricultural datasets. Compared with several state-of-the-art models, the proposed model achieves better segmentation performance, thus contributing to providing a promising support for the development of intelligent weeding in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
草木完成签到,获得积分10
1秒前
7秒前
慕青应助姚倩倩采纳,获得10
42秒前
51秒前
爱静静应助科研通管家采纳,获得10
52秒前
爱静静应助科研通管家采纳,获得10
52秒前
爱静静应助科研通管家采纳,获得10
52秒前
姚倩倩发布了新的文献求助10
56秒前
1分钟前
1分钟前
有终完成签到 ,获得积分10
1分钟前
lucky完成签到 ,获得积分10
1分钟前
清脆安南完成签到 ,获得积分10
2分钟前
2分钟前
丘比特应助姚倩倩采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
方白秋完成签到,获得积分10
3分钟前
believe完成签到,获得积分10
3分钟前
月儿完成签到 ,获得积分10
3分钟前
青出于蓝蔡完成签到,获得积分10
3分钟前
快乐半山发布了新的文献求助10
3分钟前
起风了完成签到 ,获得积分10
4分钟前
快乐半山完成签到,获得积分20
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
5分钟前
KIKIup发布了新的文献求助10
5分钟前
5分钟前
6分钟前
美好蜻蜓完成签到 ,获得积分10
6分钟前
6分钟前
7分钟前
李健的小迷弟应助炫白采纳,获得10
7分钟前
黑球发布了新的文献求助10
7分钟前
7分钟前
7分钟前
8分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3338996
求助须知:如何正确求助?哪些是违规求助? 2967044
关于积分的说明 8627866
捐赠科研通 2646460
什么是DOI,文献DOI怎么找? 1449226
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660162