Selecting reliable instances based on evidence theory for transfer learning

计算机科学 学习迁移 传输(计算) 人工智能 机器学习 并行计算
作者
Yiliang Lv,Bofeng Zhang,Xiaodong Yue,Thierry Denœux,Yue Shan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:: 123739-123739 被引量:1
标识
DOI:10.1016/j.eswa.2024.123739
摘要

The aim of transfer learning is to improve the performance of learning models in the target domain by transferring knowledge from the related source domain. However, not all data instances in the source domain are reliable for the learning task in the target domain. Unreliable source–domain data may lead to negative transfer. To address this problem, we propose a novel strategy for selecting reliable data instances from the source domain based on evidence theory. Specifically, a mass function is formulated to measure the degree of ignorance and reliability of the source domain data with respect to the learning task in the target domain. By selecting reliable instances with low degree of ignorance from the source domain, the domain adaptation of the transfer learning models is enhanced. Moreover, the proposed data-selection strategy is independent of specific learning algorithms and can be regarded as a common preprocessing technique for transfer learning. Experiments on both simulated and real-world datasets validated that the proposed data selection strategy can improve the performance of various types of transfer learning methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研小菜狗完成签到 ,获得积分10
1秒前
早日毕业完成签到,获得积分10
1秒前
爆米花应助Kuhaku采纳,获得30
1秒前
1秒前
2秒前
Criminology34应助Poison采纳,获得10
2秒前
洋葱完成签到,获得积分10
2秒前
合适芝麻完成签到,获得积分10
2秒前
香蕉觅云应助聪慧的雪糕采纳,获得10
3秒前
李小颜完成签到,获得积分10
6秒前
打打应助呼呼采纳,获得50
7秒前
小灰灰发布了新的文献求助30
7秒前
zzzzf完成签到,获得积分10
7秒前
乐乐应助1229采纳,获得10
7秒前
热心的向日葵完成签到 ,获得积分10
8秒前
8秒前
酷炫甜瓜完成签到,获得积分10
8秒前
小张发布了新的文献求助10
9秒前
Ava应助大木头采纳,获得10
9秒前
暴躁的眼神完成签到,获得积分10
9秒前
9秒前
桃也雾漫漫完成签到 ,获得积分10
10秒前
10秒前
11秒前
蓝天发布了新的文献求助10
12秒前
轻松的水壶完成签到,获得积分10
12秒前
张志超发布了新的文献求助10
13秒前
14秒前
14秒前
高高羊关注了科研通微信公众号
14秒前
烟花应助吃薯条采纳,获得10
14秒前
16秒前
16秒前
16秒前
fanshan3完成签到,获得积分20
16秒前
bbrfu完成签到,获得积分20
16秒前
16秒前
田様应助hao采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646269
求助须知:如何正确求助?哪些是违规求助? 4770756
关于积分的说明 15034169
捐赠科研通 4805036
什么是DOI,文献DOI怎么找? 2569371
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812