亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MRI super-resolution using similarity distance and multi-scale receptive field based feature fusion GAN and pre-trained slice interpolation network

插值(计算机图形学) 计算机科学 人工智能 相似性(几何) 特征(语言学) 卷积神经网络 模式识别(心理学) 计算机视觉 图像(数学) 语言学 哲学
作者
U. Nimitha,A. M.
出处
期刊:Magnetic Resonance Imaging [Elsevier]
卷期号:110: 195-209
标识
DOI:10.1016/j.mri.2024.04.021
摘要

Challenges arise in achieving high-resolution Magnetic Resonance Imaging (MRI) to improve disease diagnosis accuracy due to limitations in hardware, patient discomfort, long acquisition times, and high costs. While Convolutional Neural Networks (CNNs) have shown promising results in MRI super-resolution, they often don't look into the structural similarity and prior information available in consecutive MRI slices. By leveraging information from sequential slices, more robust features can be obtained, potentially leading to higher-quality MRI slices. We propose a multi-slice two-dimensional (2D) MRI super-resolution network that combines a Generative Adversarial Network (GAN) with feature fusion and a pre-trained slice interpolation network to achieve three-dimensional (3D) super-resolution. The proposed model requires consecutively acquired three low-resolution (LR) MRI slices along a specific axis, and achieves the reconstruction of the MRI slices in the remaining two axes. The network effectively enhances both in-plane and out-of-plane resolution along the sagittal axis while addressing computational and memory constraints in 3D super-resolution. The proposed generator has a in-plane and out-of-plane Attention (IOA) network that fuses both in-plane and out-plane features of MRI dynamically. In terms of out-of-plane attention, the network merges features by considering the similarity distance between features and for in-plane attention, the network employs a two-level pyramid structure with varying receptive fields to extract features at different scales, ensuring the inclusion of both global and local features. Subsequently, to achieve 3D MRI super-resolution, a pre-trained slice interpolation network is used that takes two consecutive super-resolved MRI slices to generate a new intermediate slice. To further enhance the network performance and perceptual quality, we introduce a feature up-sampling layer and a feature extraction block with Scaled Exponential Linear Unit (SeLU). Moreover, our super-resolution network incorporates VGG loss from a fine-tuned VGG-19 network to provide additional enhancement. Through experimental evaluations on the IXI dataset and BRATS dataset, using the peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM) and the number of training parameters, we demonstrate the superior performance of our method compared to the existing techniques. Also, the proposed model can be adapted or modified to achieve super-resolution for both 2D and 3D MRI data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
30秒前
黑环刺身发布了新的文献求助10
35秒前
1分钟前
无名完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
Perion完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
科研通AI2S应助冷傲的薯片采纳,获得200
4分钟前
薄饼哥丶发布了新的文献求助10
4分钟前
VDC应助科研通管家采纳,获得30
4分钟前
5分钟前
五岳三鸟完成签到,获得积分10
5分钟前
5分钟前
5分钟前
科目三应助不喜采纳,获得10
5分钟前
xz完成签到 ,获得积分10
5分钟前
6分钟前
自信语雪完成签到 ,获得积分20
6分钟前
落寞念珍发布了新的文献求助10
6分钟前
9分钟前
拾柒完成签到 ,获得积分10
9分钟前
Orange应助安静的沉鱼采纳,获得30
9分钟前
追风完成签到,获得积分10
9分钟前
9分钟前
葱饼完成签到 ,获得积分10
10分钟前
red完成签到 ,获得积分10
10分钟前
慕青应助爱我嫉妒我采纳,获得10
10分钟前
爱我嫉妒我完成签到,获得积分20
10分钟前
10分钟前
贝儿发布了新的文献求助10
10分钟前
11分钟前
11分钟前
11分钟前
11分钟前
11分钟前
11分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248759
求助须知:如何正确求助?哪些是违规求助? 2892223
关于积分的说明 8270188
捐赠科研通 2560404
什么是DOI,文献DOI怎么找? 1388980
科研通“疑难数据库(出版商)”最低求助积分说明 650936
邀请新用户注册赠送积分活动 627850