MRI super-resolution using similarity distance and multi-scale receptive field based feature fusion GAN and pre-trained slice interpolation network

插值(计算机图形学) 计算机科学 人工智能 相似性(几何) 特征(语言学) 卷积神经网络 模式识别(心理学) 计算机视觉 图像(数学) 哲学 语言学
作者
U. Nimitha,Ameer P.M.
出处
期刊:Magnetic Resonance Imaging [Elsevier BV]
卷期号:110: 195-209
标识
DOI:10.1016/j.mri.2024.04.021
摘要

Challenges arise in achieving high-resolution Magnetic Resonance Imaging (MRI) to improve disease diagnosis accuracy due to limitations in hardware, patient discomfort, long acquisition times, and high costs. While Convolutional Neural Networks (CNNs) have shown promising results in MRI super-resolution, they often don't look into the structural similarity and prior information available in consecutive MRI slices. By leveraging information from sequential slices, more robust features can be obtained, potentially leading to higher-quality MRI slices. We propose a multi-slice two-dimensional (2D) MRI super-resolution network that combines a Generative Adversarial Network (GAN) with feature fusion and a pre-trained slice interpolation network to achieve three-dimensional (3D) super-resolution. The proposed model requires consecutively acquired three low-resolution (LR) MRI slices along a specific axis, and achieves the reconstruction of the MRI slices in the remaining two axes. The network effectively enhances both in-plane and out-of-plane resolution along the sagittal axis while addressing computational and memory constraints in 3D super-resolution. The proposed generator has a in-plane and out-of-plane Attention (IOA) network that fuses both in-plane and out-plane features of MRI dynamically. In terms of out-of-plane attention, the network merges features by considering the similarity distance between features and for in-plane attention, the network employs a two-level pyramid structure with varying receptive fields to extract features at different scales, ensuring the inclusion of both global and local features. Subsequently, to achieve 3D MRI super-resolution, a pre-trained slice interpolation network is used that takes two consecutive super-resolved MRI slices to generate a new intermediate slice. To further enhance the network performance and perceptual quality, we introduce a feature up-sampling layer and a feature extraction block with Scaled Exponential Linear Unit (SeLU). Moreover, our super-resolution network incorporates VGG loss from a fine-tuned VGG-19 network to provide additional enhancement. Through experimental evaluations on the IXI dataset and BRATS dataset, using the peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM) and the number of training parameters, we demonstrate the superior performance of our method compared to the existing techniques. Also, the proposed model can be adapted or modified to achieve super-resolution for both 2D and 3D MRI data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助加快步伐采纳,获得10
1秒前
2秒前
爆米花应助you翅膀的鱼采纳,获得10
2秒前
邓代容完成签到 ,获得积分10
3秒前
3秒前
4秒前
5秒前
6秒前
Linden_bd完成签到 ,获得积分10
6秒前
酷波er应助淡定采纳,获得10
7秒前
燕子发布了新的文献求助10
8秒前
哈哈镜阿姐完成签到,获得积分10
8秒前
8秒前
诺亚方舟哇哈哈完成签到 ,获得积分0
9秒前
加快步伐发布了新的文献求助10
12秒前
乾乾完成签到,获得积分10
12秒前
qingxinhuo完成签到 ,获得积分10
12秒前
loga80完成签到,获得积分0
13秒前
13秒前
紧张的颤完成签到 ,获得积分10
13秒前
cxjie320完成签到,获得积分10
13秒前
13秒前
Rosie完成签到,获得积分10
14秒前
晚意完成签到 ,获得积分10
15秒前
15秒前
于丽萍完成签到 ,获得积分10
17秒前
自觉雅柏完成签到,获得积分20
17秒前
ding应助xrhk采纳,获得10
18秒前
ycp发布了新的文献求助10
19秒前
芮Echo发布了新的文献求助10
20秒前
20秒前
20秒前
20秒前
21秒前
22秒前
苹果柜子完成签到 ,获得积分10
22秒前
平常莹芝完成签到,获得积分10
24秒前
24秒前
577完成签到,获得积分10
24秒前
maclogos完成签到,获得积分10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965786
求助须知:如何正确求助?哪些是违规求助? 3511078
关于积分的说明 11156200
捐赠科研通 3245691
什么是DOI,文献DOI怎么找? 1793100
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268