PMMNet: A Dual Branch Fusion Network of Point Cloud and Multi-View for Intracranial Aneurysm Classification and Segmentation

计算机科学 人工智能 点云 分割 稳健性(进化) 模式识别(心理学) 图像分割 支持向量机 特征提取 深度学习 计算机视觉 生物化学 化学 基因
作者
Ruifen Cao,Dongwei Zhang,Pi-Jing Wei,Yun Ding,Chun-Hou Zheng,Dayu Tan,Chao Zhou
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:4
标识
DOI:10.1109/jbhi.2024.3380054
摘要

Intracranial aneurysm (IA) is a vascular disease of the brain arteries caused by pathological vascular dilation, which can result in subarachnoid hemorrhage if ruptured. Automatically classification and segmentation of intracranial aneurysms are essential for their diagnosis and treatment. However, the majority of current research is focused on two-dimensional images, ignoring the 3D spatial information that is also critical. In this work, we propose a novel dual-branch fusion network called the Point Cloud and Multi-View Medical Neural Network (PMMNet) for IA classification and segmentation. Specifically, one branch based on 3D point clouds serves the purpose of extracting spatial features, whereas the other branch based on multi-view images acquires 2D pixel features. Ultimately, the two types of features are fused for IA classification and segmentation. To extract both local and global features from 3D point clouds, Multilayer Perceptron (MLP) and the attention mechanism are used in parallel. In addition, a SPSA module is proposed for multi-view image feature learning, which extracts more exquisite channel and spatial multi-scale features from 2D images. Experiments conducted on the IntrA dataset outperform other state-of-the-art methods, demonstrating that the proposed PMMNet exhibits strong superiority on the medical 3D dataset. We also obtain competitive results on public datasets, including ModelNet40, ModelNet10, and ShapeNetPart, which further validate the robustness and generality of the PMMNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助XINYUZHU采纳,获得10
1秒前
zhengzehong完成签到,获得积分10
1秒前
远看寒山完成签到,获得积分10
1秒前
soar完成签到,获得积分10
2秒前
tannie完成签到 ,获得积分10
3秒前
皛皛应助Arloong采纳,获得10
5秒前
AAA咸鱼批发完成签到 ,获得积分10
7秒前
楠茸完成签到 ,获得积分10
8秒前
8秒前
Lucas应助mm采纳,获得30
9秒前
9秒前
peanuttt完成签到,获得积分10
10秒前
13秒前
hehexi完成签到,获得积分10
13秒前
无奈的傲易完成签到,获得积分10
13秒前
瑞_完成签到,获得积分10
14秒前
szcf完成签到,获得积分10
14秒前
15秒前
111111111完成签到,获得积分10
15秒前
peanuttt发布了新的文献求助30
15秒前
輝23完成签到,获得积分20
15秒前
17秒前
17秒前
17秒前
Hello应助Emilio采纳,获得10
19秒前
19秒前
20秒前
飞快的访枫完成签到,获得积分20
21秒前
22秒前
22秒前
伶俐香寒完成签到,获得积分10
22秒前
JLU666完成签到 ,获得积分0
23秒前
夏青荷发布了新的文献求助10
24秒前
yalan发布了新的文献求助10
25秒前
29秒前
35秒前
旦斯特尼发布了新的文献求助10
35秒前
39秒前
41秒前
huuun完成签到 ,获得积分10
41秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228046
求助须知:如何正确求助?哪些是违规求助? 2875959
关于积分的说明 8193272
捐赠科研通 2543114
什么是DOI,文献DOI怎么找? 1373502
科研通“疑难数据库(出版商)”最低求助积分说明 646781
邀请新用户注册赠送积分活动 621276