High-performance presurgical differentiation of glioblastoma and metastasis by means of multiparametric neurite orientation dispersion and density imaging (NODDI) radiomics

无线电技术 医学 磁共振成像 磁共振弥散成像 胶质母细胞瘤 核医学 放射科 癌症研究
作者
Jie Bai,Mengyang He,Eryuan Gao,Guang Yang,Chengxiu Zhang,Hongxi Yang,Jie Dong,Xiaoli Ma,Yufei Gao,Huiting Zhang,Yujin Xu,Yong Zhang,Jingliang Cheng,Guohua Zhao
出处
期刊:European Radiology [Springer Nature]
被引量:1
标识
DOI:10.1007/s00330-024-10686-8
摘要

To evaluate the performance of multiparametric neurite orientation dispersion and density imaging (NODDI) radiomics in distinguishing between glioblastoma (Gb) and solitary brain metastasis (SBM).In this retrospective study, NODDI images were curated from 109 patients with Gb (n = 57) or SBM (n = 52). Automatically segmented multiple volumes of interest (VOIs) encompassed the main tumor regions, including necrosis, solid tumor, and peritumoral edema. Radiomics features were extracted for each main tumor region, using three NODDI parameter maps. Radiomics models were developed based on these three NODDI parameter maps and their amalgamation to differentiate between Gb and SBM. Additionally, radiomics models were constructed based on morphological magnetic resonance imaging (MRI) and diffusion imaging (diffusion-weighted imaging [DWI]; diffusion tensor imaging [DTI]) for performance comparison.The validation dataset results revealed that the performance of a single NODDI parameter map model was inferior to that of the combined NODDI model. In the necrotic regions, the combined NODDI radiomics model exhibited less than ideal discriminative capabilities (area under the receiver operating characteristic curve [AUC] = 0.701). For peritumoral edema regions, the combined NODDI radiomics model achieved a moderate level of discrimination (AUC = 0.820). Within the solid tumor regions, the combined NODDI radiomics model demonstrated superior performance (AUC = 0.904), surpassing the models of other VOIs. The comparison results demonstrated that the NODDI model was better than the DWI and DTI models, while those of the morphological MRI and NODDI models were similar.The NODDI radiomics model showed promising performance for preoperative discrimination between Gb and SBM.The NODDI radiomics model showed promising performance for preoperative discrimination between Gb and SBM, and radiomics features can be incorporated into the multidimensional phenotypic features that describe tumor heterogeneity.• The neurite orientation dispersion and density imaging (NODDI) radiomics model showed promising performance for preoperative discrimination between glioblastoma and solitary brain metastasis. • Compared with other tumor volumes of interest, the NODDI radiomics model based on solid tumor regions performed best in distinguishing the two types of tumors. • The performance of the single-parameter NODDI model was inferior to that of the combined-parameter NODDI model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luyao970131发布了新的文献求助10
1秒前
英俊的铭应助欣喜战斗机采纳,获得10
2秒前
Erick完成签到,获得积分10
3秒前
好好好发布了新的文献求助10
4秒前
BioRick发布了新的文献求助10
4秒前
5秒前
5秒前
上官若男应助luyao970131采纳,获得10
7秒前
7秒前
星辰大海应助dabao采纳,获得10
8秒前
9秒前
11秒前
12秒前
13秒前
xhm完成签到 ,获得积分10
13秒前
呆萌的天宇完成签到,获得积分10
14秒前
14秒前
小锅完成签到,获得积分10
14秒前
1234354346发布了新的文献求助10
14秒前
ccc完成签到,获得积分10
15秒前
15秒前
17秒前
SUPERDOUBLE发布了新的文献求助10
18秒前
NexusExplorer应助科研通管家采纳,获得10
19秒前
Felice应助科研通管家采纳,获得30
19秒前
子车茗应助科研通管家采纳,获得10
19秒前
SciGPT应助科研通管家采纳,获得10
19秒前
子车茗应助科研通管家采纳,获得10
19秒前
李健应助科研通管家采纳,获得10
19秒前
深情安青应助科研通管家采纳,获得10
20秒前
研友_VZG7GZ应助科研通管家采纳,获得10
20秒前
子车茗应助科研通管家采纳,获得10
20秒前
小马甲应助科研通管家采纳,获得10
20秒前
20秒前
汉堡包应助科研通管家采纳,获得10
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
英姑应助科研通管家采纳,获得10
20秒前
20秒前
子车茗应助科研通管家采纳,获得10
20秒前
Akim应助科研通管家采纳,获得10
20秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157519
求助须知:如何正确求助?哪些是违规求助? 2808909
关于积分的说明 7879293
捐赠科研通 2467387
什么是DOI,文献DOI怎么找? 1313431
科研通“疑难数据库(出版商)”最低求助积分说明 630398
版权声明 601919