已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Indoor Positioning Fingerprint Database Construction Based on CSA-DBSCAN and RCVAE-GAN

指纹(计算) 计算机科学 数据库扫描 模式识别(心理学) 数据挖掘 人工智能 数据库 聚类分析 相关聚类 树冠聚类算法
作者
Li Yao,hao zhang,Liyang Zhang,Rui Gao,Qian Zhang
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (5): 055002-055002
标识
DOI:10.1088/1402-4896/ad351a
摘要

Abstract With the increasing size of buildings, in order to achieve high-precision indoor positioning services, it is a challenging task to build an offline fingerprint database with high quality, high density and less manpower and material consumption. Aiming to solve the problem of low-quality WiFi indoor positioning fingerprint inventory constructed by traditional methods, which affects positioning accuracy and incurs high costs, this paper proposes a method for indoor positioning fingerprint database construction based on Crow Search Algorithm Optimizes Density Clustering (CSA-DBSCAN) and Regressor Conditional VAE Generative Adversarial Network (RCVAE-GAN). Collecting only a tiny amount of sparse reference point position coordinates and RSS data makes it possible to construct a high-quality WiFi indoor positioning fingerprint database. Firstly, the method utilizes the density clustering method based on Crow Search Algorithm Optimization (CSA-DBSCAN) to process RSS data collected from the reference point. This helps minimize the impact of abnormal RSS data on creating the fingerprint database. Secondly, the RCVAE-GAN depth generation model was developed. The model consists of an encoder E, a generator G, a discriminator D, and a regressor R. After constructing the model, the data with abnormal RSS will be removed and input into the model for pre-training and joint training, resulting in a high-quality deep-generation model. Finally, a high-quality and high-density fingerprint database is constructed by combining the collected reference points with fingerprint data generated by the depth generation model. Experimental results show that the proposed method reduces the root mean square error (RMSE) deviation of the generated fingerprint data by 38% and 12% respectively, compared to the RBF interpolation method and the CVAE-GAN method in the same experimental scenario. The constructed fingerprint database is used for positioning, improving positioning accuracy by 70% and 65% respectively. The method described in this paper can construct a high-quality fingerprint database, effectively improving the efficiency of fingerprint database construction and reducing the costs associated with labor and time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懒羊羊发布了新的文献求助10
6秒前
11秒前
13秒前
啊啊纠结啊睡觉觉完成签到 ,获得积分10
15秒前
懒羊羊完成签到,获得积分10
15秒前
文艺的小刺猬完成签到 ,获得积分10
16秒前
Orange应助科研通管家采纳,获得10
19秒前
pluto应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
脑洞疼应助科研通管家采纳,获得10
19秒前
19秒前
思源应助科研通管家采纳,获得10
19秒前
fufu完成签到 ,获得积分10
21秒前
圆圆圆完成签到 ,获得积分10
23秒前
26秒前
哈哈哈哈st完成签到 ,获得积分10
26秒前
YUU完成签到,获得积分10
28秒前
xlk2222发布了新的文献求助10
29秒前
30秒前
zbx发布了新的文献求助10
33秒前
34秒前
Jonas完成签到,获得积分10
42秒前
老才完成签到 ,获得积分10
42秒前
44秒前
深情的凝云完成签到 ,获得积分10
49秒前
小肥杨完成签到 ,获得积分10
50秒前
51秒前
碧蓝皮卡丘完成签到,获得积分10
52秒前
烟花应助DanBao采纳,获得20
54秒前
Ccry_完成签到 ,获得积分20
54秒前
55秒前
九川发布了新的文献求助20
56秒前
57秒前
guan完成签到 ,获得积分10
58秒前
adong发布了新的文献求助10
1分钟前
淡漠完成签到 ,获得积分10
1分钟前
adong完成签到,获得积分10
1分钟前
1分钟前
可爱的函函应助Guoguocheng采纳,获得10
1分钟前
英勇羿发布了新的文献求助10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125967
求助须知:如何正确求助?哪些是违规求助? 2776233
关于积分的说明 7729471
捐赠科研通 2431595
什么是DOI,文献DOI怎么找? 1292160
科研通“疑难数据库(出版商)”最低求助积分说明 622548
版权声明 600392