卡尔曼滤波器
协方差矩阵
分歧(语言学)
协方差
快速卡尔曼滤波
自适应滤波器
灵敏度(控制系统)
控制理论(社会学)
计算机科学
噪音(视频)
不变扩展卡尔曼滤波器
估计理论
数学
扩展卡尔曼滤波器
数学优化
算法
人工智能
统计
工程类
控制(管理)
哲学
语言学
电子工程
图像(数学)
作者
Quanbo Ge,Y. Li,Yuanliang Wang,Xiaoming Hu,H.-T. Li,Changyin Sun
出处
期刊:IEEE Transactions on Automatic Control
[Institute of Electrical and Electronics Engineers]
日期:2024-03-18
卷期号:69 (9): 6230-6237
被引量:1
标识
DOI:10.1109/tac.2024.3376306
摘要
This paper studies an adaptive Kalman filter (KF) method based on model parameter ratio (MPR). The model parameter ratio theory is proposed for the first time, and the adaptive estimation problem is transformed into a constrained optimization problem. Compared with the existing Sage-Husa adaptive filtering algorithm, it can be seen that the application of this theory can more accurately estimate the process noise covariance and measurement noise covariance matrix, so that the algorithm has better filtering accuracy and better state estimation performance, At the same time, it is also better in anti divergence and sensitivity to initial conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI