The Long-Term Effect of Early-Life Uncertainty on Mental Health in Adolescence and Adulthood: A Meta-Analysis

心理健康 适度 荟萃分析 心理学 临床心理学 置信区间 多级模型 精神科 医学 社会心理学 内科学 机器学习 计算机科学
作者
Lei Shao,Chengjia Zhao,Guoliang Yu
出处
期刊:Trauma, Violence, & Abuse [SAGE Publishing]
卷期号:25 (4): 3211-3225
标识
DOI:10.1177/15248380241241028
摘要

Turbulent changes in early life are a hidden source of childhood trauma, increasing potential risks for mental illness. Many studies have identified the link between childhood uncertainty and mental health. However, research on the long-term effect of early-life uncertainty (EU) on mental health has not been systematically synthesized. This meta-analysis aims to provide a quantitative estimate of the association between EU and subsequent mental health outcomes. Eight electronic databases and gray literature were searched. Twenty-eight studies met our inclusion criteria: samples of non-clinical adolescents or adults and clear and valid assessments. Random-effect models were used to calculate the pooled effect sizes of EU on internalizing problems, externalizing problems, and well-being. Meta-regression and subgroup analysis were used to explore potential moderators. Results indicated small to moderate associations involving EU and internalizing problem ( r = .28; 95% confidence interval [CI] [0.228, 0.326]) and externalizing problem ( r = .16; 95% CI [0.102, 0.220]). EU was not significantly associated with well-being ( r = −.41; 95% CI [−0.738, 0.071]). Furthermore, moderator analyses found that composite uncertain experiences in childhood had a stronger negative effect than single experiences. EU was a stronger predictor of mental health problems in adults than in adolescents. Cross-sectional studies would amplify the correlation between EU and mental illness compared to longitudinal studies. In the future, childhood uncertain and unpredictable risks should receive more attention. More research needs to focus on positive psychological indicators and samples from non-Western countries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
comz完成签到,获得积分10
刚刚
木子完成签到,获得积分10
1秒前
英俊的铭应助贪玩蓝月采纳,获得10
2秒前
2秒前
努力学习发布了新的文献求助10
2秒前
Akim应助牙牙采纳,获得10
3秒前
3秒前
3秒前
Lyric_发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
科研凯凯发布了新的文献求助10
7秒前
大昭完成签到,获得积分10
8秒前
EasyNan应助糊涂涂采纳,获得10
9秒前
10秒前
灼才完成签到,获得积分10
11秒前
科研通AI5应助777采纳,获得10
12秒前
12秒前
xu发布了新的文献求助10
12秒前
13秒前
13秒前
科研凯凯完成签到,获得积分10
14秒前
星辰大海应助御风采纳,获得10
14秒前
14秒前
静静完成签到 ,获得积分10
15秒前
牙牙发布了新的文献求助10
16秒前
shijie805发布了新的文献求助10
18秒前
18秒前
称心寒松发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
鱼缸发布了新的文献求助10
21秒前
吃饭必加葱完成签到 ,获得积分10
22秒前
牙牙完成签到,获得积分10
22秒前
22秒前
CodeCraft应助xu采纳,获得10
22秒前
Eden发布了新的文献求助10
22秒前
科目三应助陈奥采纳,获得10
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740976
求助须知:如何正确求助?哪些是违规求助? 3283817
关于积分的说明 10036983
捐赠科研通 3000610
什么是DOI,文献DOI怎么找? 1646618
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427