体重增加
前额叶腹内侧皮质
中央后回
脑岛
功能磁共振成像
精神分裂症(面向对象编程)
医学
内科学
心理学
眶额皮质
神经科学
腹侧纹状体
内分泌学
前额叶皮质
精神科
多巴胺
纹状体
体重
认知
作者
Keith Dodd,Kristina T. Legget,Marc‐André Cornier,Andrew M. Novick,Maureen McHugo,Brian D. Berman,Benjamin P. Lawful,Jason R. Tregellas
标识
DOI:10.1016/j.schres.2024.03.033
摘要
The mechanisms by which antipsychotic medications (APs) contribute to obesity in schizophrenia are not well understood. Because AP effects on functional brain connectivity may contribute to weight effects, the current study investigated how AP-associated weight-gain risk relates to functional connectivity in schizophrenia. Fifty-five individuals with schizophrenia (final N = 54) were divided into groups based on previously reported AP weight-gain risk (no APs/low risk [N = 19]; moderate risk [N = 17]; high risk [N = 18]). Resting-state functional magnetic resonance imaging (fMRI) was completed after an overnight fast ("fasted") and post-meal ("fed"). Correlations between AP weight-gain risk and functional connectivity were assessed at the whole-brain level and in reward- and eating-related brain regions (anterior insula, caudate, nucleus accumbens). When fasted, greater AP weight-gain risk was associated with increased connectivity between thalamus and sensorimotor cortex (pFDR = 0.021). When fed, greater AP weight-gain risk was associated with increased connectivity between left caudate and left precentral/postcentral gyri (pFDR = 0.048) and between right caudate and multiple regions, including the left precentral/postcentral gyri (pFDR = 0.001), intracalcarine/precuneal/cuneal cortices (pFDR < 0.001), and fusiform gyrus (pFDR = 0.008). When fed, greater AP weight-gain risk was also associated with decreased connectivity between right anterior insula and ventromedial prefrontal cortex (pFDR = 0.002). APs with higher weight-gain risk were associated with greater connectivity between reward-related regions and sensorimotor regions when fasted, perhaps relating to motor anticipation for consumption. Higher weight-gain risk APs were also associated with increased connectivity between reward, salience, and visual regions when fed, potentially reflecting greater desire for consumption following satiety.
科研通智能强力驱动
Strongly Powered by AbleSci AI