已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Diagnostic Performance of Artificial Intelligence for Detection of Scaphoid and Distal Radius Fractures: A Systematic Review

接收机工作特性 医学 半径 人工智能 神秘的 桡骨远端骨折 舟状骨骨折 手腕 核医学 放射科 计算机科学 内科学 病理 替代医学 计算机安全
作者
Jacob F. Oeding,Kyle N. Kunze,Caden J. Messer,Ayoosh Pareek,Duretti T. Fufa,Nicholas Pulos,Peter C. Rhee
出处
期刊:The Journal of Hand Surgery [Elsevier BV]
卷期号:49 (5): 411-422 被引量:9
标识
DOI:10.1016/j.jhsa.2024.01.020
摘要

Purpose To review the existing literature to (1) determine the diagnostic efficacy of artificial intelligence (AI) models for detecting scaphoid and distal radius fractures and (2) compare the efficacy to human clinical experts. Methods PubMed, OVID/Medline, and Cochrane libraries were queried for studies investigating the development, validation, and analysis of AI for the detection of scaphoid or distal radius fractures. Data regarding study design, AI model development and architecture, prediction accuracy/area under the receiver operator characteristic curve (AUROC), and imaging modalities were recorded. Results A total of 21 studies were identified, of which 12 (57.1%) used AI to detect fractures of the distal radius, and nine (42.9%) used AI to detect fractures of the scaphoid. AI models demonstrated good diagnostic performance on average, with AUROC values ranging from 0.77 to 0.96 for scaphoid fractures and from 0.90 to 0.99 for distal radius fractures. Accuracy of AI models ranged between 72.0% to 90.3% and 89.0% to 98.0% for scaphoid and distal radius fractures, respectively. When compared to clinical experts, 13 of 14 (92.9%) studies reported that AI models demonstrated comparable or better performance. The type of fracture influenced model performance, with worse overall performance on occult scaphoid fractures; however, models trained specifically on occult fractures demonstrated substantially improved performance when compared to humans. Conclusions AI models demonstrated excellent performance for detecting scaphoid and distal radius fractures, with the majority demonstrating comparable or better performance compared with human experts. Worse performance was demonstrated on occult fractures. However, when trained specifically on difficult fracture patterns, AI models demonstrated improved performance. Clinical Relevance AI models can help detect commonly missed occult fractures while enhancing workflow efficiency for distal radius and scaphoid fracture diagnoses. As performance varies based on fracture type, future studies focused on wrist fracture detection should clearly define whether the goal is to (1) identify difficult-to-detect fractures or (2) improve workflow efficiency by assisting in routine tasks. To review the existing literature to (1) determine the diagnostic efficacy of artificial intelligence (AI) models for detecting scaphoid and distal radius fractures and (2) compare the efficacy to human clinical experts. PubMed, OVID/Medline, and Cochrane libraries were queried for studies investigating the development, validation, and analysis of AI for the detection of scaphoid or distal radius fractures. Data regarding study design, AI model development and architecture, prediction accuracy/area under the receiver operator characteristic curve (AUROC), and imaging modalities were recorded. A total of 21 studies were identified, of which 12 (57.1%) used AI to detect fractures of the distal radius, and nine (42.9%) used AI to detect fractures of the scaphoid. AI models demonstrated good diagnostic performance on average, with AUROC values ranging from 0.77 to 0.96 for scaphoid fractures and from 0.90 to 0.99 for distal radius fractures. Accuracy of AI models ranged between 72.0% to 90.3% and 89.0% to 98.0% for scaphoid and distal radius fractures, respectively. When compared to clinical experts, 13 of 14 (92.9%) studies reported that AI models demonstrated comparable or better performance. The type of fracture influenced model performance, with worse overall performance on occult scaphoid fractures; however, models trained specifically on occult fractures demonstrated substantially improved performance when compared to humans. AI models demonstrated excellent performance for detecting scaphoid and distal radius fractures, with the majority demonstrating comparable or better performance compared with human experts. Worse performance was demonstrated on occult fractures. However, when trained specifically on difficult fracture patterns, AI models demonstrated improved performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
恋雅颖月应助谨慎雪碧采纳,获得10
3秒前
8秒前
9秒前
hhhi发布了新的文献求助10
11秒前
leo完成签到,获得积分10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
猪猪hero应助科研通管家采纳,获得10
11秒前
11秒前
leo发布了新的文献求助10
14秒前
CanadaPaoKing完成签到 ,获得积分10
14秒前
ctomit完成签到,获得积分10
16秒前
Lucas应助Trtr7985采纳,获得10
18秒前
Tian_lanlan完成签到,获得积分10
18秒前
rui520完成签到 ,获得积分10
20秒前
好久不见完成签到 ,获得积分10
27秒前
英俊的铭应助几酝采纳,获得30
28秒前
aa完成签到,获得积分10
30秒前
Doris完成签到 ,获得积分10
30秒前
Chi_bio关注了科研通微信公众号
31秒前
CodeCraft应助hhhi采纳,获得10
34秒前
一直向前发布了新的文献求助10
36秒前
40秒前
43秒前
43秒前
AFM发布了新的文献求助10
48秒前
49秒前
独特跳跳糖完成签到 ,获得积分10
49秒前
立军完成签到,获得积分10
52秒前
Sarah完成签到 ,获得积分10
53秒前
落晖完成签到 ,获得积分10
53秒前
Chi_bio发布了新的文献求助10
53秒前
xx1234567890发布了新的文献求助10
54秒前
张aa完成签到 ,获得积分10
54秒前
风鱼完成签到 ,获得积分10
55秒前
没有昵称完成签到 ,获得积分10
58秒前
三井库里发布了新的文献求助10
1分钟前
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989918
求助须知:如何正确求助?哪些是违规求助? 3532013
关于积分的说明 11255831
捐赠科研通 3270829
什么是DOI,文献DOI怎么找? 1805053
邀请新用户注册赠送积分活动 882233
科研通“疑难数据库(出版商)”最低求助积分说明 809216