Critical material requirements and recycling opportunities for US wind and solar power generation

工业生态学 风力发电 环境科学 发电 功率(物理) 自然资源经济学 业务 经济 工程类 持续性 电气工程 生态学 物理 量子力学 生物
作者
Tessa Lee,Yuan Yao,T. E. Graedel,Alessio Miatto
出处
期刊:Journal of Industrial Ecology [Wiley]
卷期号:28 (3): 527-541 被引量:2
标识
DOI:10.1111/jiec.13479
摘要

Abstract The deployment of renewable energy generation technologies, driven primarily by concerns over catastrophic climate change, is expected to increase rapidly in the United States. Rapid increases in the deployment of wind and solar energy will translate to increases in critical material requirements, causing concern that demand could outstrip supply, leading to mineral price volatility and potentially slowing the energy transition. This study presents a detailed demand‐side model for wind and solar in the United States using dynamic material flow analysis to calculate the requirements for 15 elements: Cr, Zn, Ga, Se, Mo, Ag, Cd, In, Sn, Te, Pr, Nd, Tb, Dy, and Pb. Results show that transitioning to a completely decarbonized US energy system by 2050 could require a five‐to‐sevenfold increase in critical material flow‐into‐use compared with business as usual (BAU), with some materials requiring much larger increases. Rare earth elements (REEs) could require 60–300 times greater material flows into the US power sector in 2050 than in 2021, representing 13%–49% of the total global REE supply. Te requirements for reaching net zero by 2050 could exceed current supply, posing challenges for widespread deployment of cadmium‐telluride solar. We also investigate several strategies for reducing material requirements, including closed‐loop recycling, material intensity reduction, and changing market share of subtechnologies (e.g., using crystalline silicon solar panels instead of cadmium telluride). Although these strategies can significantly reduce critical material requirements by up to 40% on average, aggressive decarbonization will still require a substantial amount of critical material.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lige完成签到 ,获得积分10
刚刚
1秒前
Ting完成签到 ,获得积分10
1秒前
保卫时光完成签到,获得积分10
2秒前
Roger发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
wjsAljl完成签到,获得积分10
5秒前
满意的含灵完成签到,获得积分10
7秒前
茶米发布了新的文献求助10
9秒前
夏天的风发布了新的文献求助10
9秒前
小二郎应助超帅的天曼采纳,获得10
10秒前
www完成签到 ,获得积分10
14秒前
17秒前
Biohacking完成签到,获得积分10
18秒前
高高发布了新的文献求助10
20秒前
耶斯发布了新的文献求助10
20秒前
科研蝗虫发布了新的文献求助10
21秒前
23秒前
困困包发布了新的文献求助10
24秒前
华仔应助eno1009采纳,获得20
24秒前
Lucas应助jgpiao采纳,获得10
25秒前
25秒前
26秒前
完美世界应助夏天的风采纳,获得10
26秒前
深情安青应助开朗的访彤采纳,获得10
26秒前
27秒前
27秒前
Celia完成签到,获得积分10
29秒前
碧蓝翅膀完成签到,获得积分20
30秒前
121发布了新的文献求助10
30秒前
Balala发布了新的文献求助30
31秒前
lleyao发布了新的文献求助10
32秒前
34秒前
内向的青荷完成签到,获得积分10
34秒前
35秒前
沉默红牛发布了新的文献求助10
38秒前
Roger发布了新的文献求助10
38秒前
元谷雪应助清脆靳采纳,获得10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557486
求助须知:如何正确求助?哪些是违规求助? 4642578
关于积分的说明 14668531
捐赠科研通 4583986
什么是DOI,文献DOI怎么找? 2514487
邀请新用户注册赠送积分活动 1488830
关于科研通互助平台的介绍 1459454