Critical material requirements and recycling opportunities for US wind and solar power generation

工业生态学 风力发电 环境科学 发电 功率(物理) 自然资源经济学 业务 经济 工程类 持续性 电气工程 生态学 物理 量子力学 生物
作者
Tessa Lee,Yuan Yao,T. E. Graedel,Alessio Miatto
出处
期刊:Journal of Industrial Ecology [Wiley]
卷期号:28 (3): 527-541 被引量:2
标识
DOI:10.1111/jiec.13479
摘要

Abstract The deployment of renewable energy generation technologies, driven primarily by concerns over catastrophic climate change, is expected to increase rapidly in the United States. Rapid increases in the deployment of wind and solar energy will translate to increases in critical material requirements, causing concern that demand could outstrip supply, leading to mineral price volatility and potentially slowing the energy transition. This study presents a detailed demand‐side model for wind and solar in the United States using dynamic material flow analysis to calculate the requirements for 15 elements: Cr, Zn, Ga, Se, Mo, Ag, Cd, In, Sn, Te, Pr, Nd, Tb, Dy, and Pb. Results show that transitioning to a completely decarbonized US energy system by 2050 could require a five‐to‐sevenfold increase in critical material flow‐into‐use compared with business as usual (BAU), with some materials requiring much larger increases. Rare earth elements (REEs) could require 60–300 times greater material flows into the US power sector in 2050 than in 2021, representing 13%–49% of the total global REE supply. Te requirements for reaching net zero by 2050 could exceed current supply, posing challenges for widespread deployment of cadmium‐telluride solar. We also investigate several strategies for reducing material requirements, including closed‐loop recycling, material intensity reduction, and changing market share of subtechnologies (e.g., using crystalline silicon solar panels instead of cadmium telluride). Although these strategies can significantly reduce critical material requirements by up to 40% on average, aggressive decarbonization will still require a substantial amount of critical material.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
unicorn发布了新的文献求助10
刚刚
1秒前
3秒前
july九月发布了新的文献求助10
3秒前
明理的蜗牛完成签到,获得积分10
3秒前
xzg完成签到,获得积分10
3秒前
4秒前
大个应助小田采纳,获得10
5秒前
渡边彻完成签到,获得积分20
5秒前
luxer关注了科研通微信公众号
5秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
酷波er应助小张要努力采纳,获得10
8秒前
9秒前
NexusExplorer应助eile采纳,获得10
9秒前
斯文败类应助平淡小凝采纳,获得10
9秒前
10秒前
牧濑红莉栖关注了科研通微信公众号
10秒前
10秒前
Mine_cherry应助liaoyoujiao采纳,获得30
11秒前
11秒前
ZJH发布了新的文献求助10
12秒前
13秒前
sun花花发布了新的文献求助10
13秒前
cool完成签到 ,获得积分10
15秒前
july九月完成签到,获得积分10
15秒前
赘婿应助卷粉儿采纳,获得10
16秒前
Yang发布了新的文献求助30
16秒前
可靠小懒虫完成签到,获得积分10
18秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
共享精神应助典雅的俊驰采纳,获得10
22秒前
22秒前
夜雨听笑发布了新的文献求助10
22秒前
23秒前
喜羊羊完成签到 ,获得积分10
24秒前
思源应助生动友容采纳,获得10
24秒前
25秒前
25秒前
汉堡包应助风中的丝袜采纳,获得10
25秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620753
求助须知:如何正确求助?哪些是违规求助? 4705292
关于积分的说明 14931499
捐赠科研通 4762999
什么是DOI,文献DOI怎么找? 2551173
邀请新用户注册赠送积分活动 1513770
关于科研通互助平台的介绍 1474661