Photocatalysis Meets Piezoelectricity in a Type-I Oxygen Vacancy-Rich BaTiO3/BiOBr Heterojunction: Mechanism Insights from Characterizations to DFT Calculations

光催化 异质结 罗丹明B X射线光电子能谱 压电 化学 空位缺陷 降级(电信) 热液循环 化学工程 纳米技术 光电子学 材料科学 复合材料 结晶学 催化作用 电子工程 有机化学 工程类
作者
Yan Xu,Huanyan Xu,Lianwei Shan,Yue Liu,Mao-Chang Cao,Liguo Jin,Limin Dong
出处
期刊:Inorganic Chemistry [American Chemical Society]
卷期号:63 (14): 6500-6513 被引量:45
标识
DOI:10.1021/acs.inorgchem.4c00378
摘要

It is a challenging task to design a piezoelectric photocatalyst with excellent performance under mechanical agitation instead of ultrasonic irradiation. Integrating vacancy defects into a heterojunction seems to be an effective strategy for synergistically increasing its piezo-photocatalytic performance. For this goal, a two-step hydrothermal method was adopted to architect a type-I oxygen-vacancy-rich BaTiO3/BiOBr heterojunction to surge the degradation of Rhodamine B (RhB) under the combined action of simulated sunlight irradiation and mechanical agitation. Various instrumental techniques demonstrated the formation of a BaTiO3/BiOBr heterojunction with high crystallinity. The existence of surface oxygen vacancies was confirmed by XPS and EPR tests. PFM results manifested that this heterojunction had excellent piezoelectric properties, with a piezoelectric response value of 30.31 pm V-1. Comparative experiments indicated that RhB degradation efficiency under piezo-photocatalysis over this heterojunction largely exceeded the total sum of those under piezocatalysis and photocatalysis. h+, ·O2-, and 1O2 were the dominant reactive species for RhB degradation. The improved separation efficiency of photogenerated charges was verified by electrochemical measurements. DFT calculations indicated that the polarization of BaTiO3 could affect the electronic band structure of BiOBr. This work will provide comprehensive insights into piezo-photocatalytic mechanism at a microcosmic level and help to develop new-styled piezoelectric photocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙嘉畯发布了新的文献求助10
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
无极微光应助科研通管家采纳,获得20
刚刚
猪猪hero应助科研通管家采纳,获得10
1秒前
猪猪hero应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
猪猪hero应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
猪猪hero应助科研通管家采纳,获得10
1秒前
含蓄觅山发布了新的文献求助10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得80
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
柚子星发布了新的文献求助10
2秒前
zhong完成签到,获得积分10
2秒前
cauwindwill完成签到,获得积分10
3秒前
顾北完成签到,获得积分10
3秒前
无私妙菡发布了新的文献求助10
3秒前
阔达追命完成签到,获得积分10
3秒前
星辰大海应助矜持采纳,获得10
3秒前
大梦完成签到,获得积分10
4秒前
王瑾言发布了新的文献求助10
4秒前
zzz发布了新的文献求助10
4秒前
5秒前
背后夜柳发布了新的文献求助10
6秒前
6秒前
6秒前
领导范儿应助zhang采纳,获得10
6秒前
7秒前
科研通AI6应助wyyp采纳,获得10
7秒前
雪山飞龙发布了新的文献求助10
7秒前
7秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610753
求助须知:如何正确求助?哪些是违规求助? 4695233
关于积分的说明 14886085
捐赠科研通 4723350
什么是DOI,文献DOI怎么找? 2545246
邀请新用户注册赠送积分活动 1510017
关于科研通互助平台的介绍 1473110