Role of magnetic resonance imaging in the prediction of histological grade in soft tissue sarcomas

医学 磁共振成像 软组织 分级(工程) 软组织肉瘤 放射科 肉瘤 逻辑回归 回顾性队列研究 核医学 病理 内科学 工程类 土木工程
作者
Tomás Mansur Duarte de Miranda Marques,Wagner Santana Cerqueira,João Simão de Melo Neto,Bruna Elisa Catin Kupper,R. Takahashi,Tiago Santoro Bezerra,Paulo Roberto Stevanato Filho,Wilson Toshihiko Nakagawa,Ademar Lopes,Samuel Aguiar
出处
期刊:Journal of Surgical Oncology [Wiley]
标识
DOI:10.1002/jso.27663
摘要

Abstract Background Soft tissue sarcomas are rare malignant tumors with significant heterogeneity. The importance of classifying histological grades is fundamental to defining the treatment approach. Objective To evaluate magnetic resonance imaging (MRI) in predicting the histological grade of soft tissue sarcomas. Methods A retrospective observational study included patients over 18 years undergoing MRI and primary tumor surgery at AC Camargo Cancer Center from January 2015 to June 2022. Two radiologists evaluated MRI criteria (size, margin definition, heterogeneity of the T2 signal, high‐intensity peritumoral signal on T2, and postperitumoral contrast), and a grading prediction score was calculated. χ 2 and logistic regression analyses were conducted. Results Sixty‐eight patients were included (38 men; median: 48 years). Moreover, 52 high‐grade and 16 low‐grade tumors were observed. The MRI criteria associated with histological grade were peritumoral high‐intensity T2‐weighted signals ( p < 0.001) and peritumoral postcontrast enhancement ( p = 0.006). Logistic regression confirmed their significance (odds ratio [OR]: 11.8 and 8.8, respectively). Each score point increment doubled the chance of high‐grade tumors (OR: 2.0; p = 0.014). Conclusion MRI effectively predicts histological grades of soft tissue sarcomas. Peritumoral high‐intensity T2‐weighted signals and peritumoral postcontrast enhancement are valuable indicators of high‐grade tumors. This highlights MRI's importance in treatment decision‐making for sarcoma patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵的囧完成签到,获得积分10
刚刚
时光完成签到,获得积分10
刚刚
七大洋的风完成签到,获得积分10
刚刚
左丘幼旋1发布了新的文献求助10
1秒前
amumu发布了新的文献求助10
1秒前
三金发布了新的文献求助10
1秒前
3秒前
kingwill应助明天更好采纳,获得20
3秒前
4秒前
乐乐应助gaos采纳,获得10
4秒前
lzy完成签到,获得积分10
4秒前
阿烨发布了新的文献求助10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
5秒前
gcc应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
小二郎应助sure采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
yin完成签到,获得积分10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
6秒前
英姑应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
36456657应助CC采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678