Evaluation of strength and stiffness degradation of RC shear walls: An integrated image processing and deep learning approach

刚度 卷积神经网络 结构工程 残余强度 抗弯强度 特征提取 残余物 人工智能 人工神经网络 计算机科学 工程类 算法
作者
Xiaodong Ji,Yue Yu,Xiang Gao,Yuncheng Zhuang,Shaohui Zhang
出处
期刊:Earthquake Engineering & Structural Dynamics [Wiley]
卷期号:53 (9): 2827-2849
标识
DOI:10.1002/eqe.4134
摘要

Abstract In the aftermath of an earthquake, damage detection and performance evaluation of structural components are imperative for assessing the residual seismic capacity of a building. In this study, an integrated image processing and deep learning approach was developed to evaluate the degradation in strength and stiffness (i.e., strength reduction and stiffness reduction) of reinforced concrete (RC) shear walls. The approach comprised two main tasks: detecting and localizing visible seismic damage from photographs and evaluating strength and stiffness degradation based on this information. The semantic segmentation network, Damage‐Net, was used for damage detection and localization. A novel crack morphological processing layer and a patch feature extraction layer were developed for damage feature extraction and compression. A lightweight deep convolutional neural network named DegradeEval‐Net_v2, featuring the upgraded dilated and separable convolution block and multi‐layer perception, was developed to link the damage feature with strength and stiffness degradation. A database comprising test data and photographs of 14 RC shear wall specimens with a flexural‐dominated behavior mode and high to intermediate ductility was constructed to train and test the DegradeEval‐Net_v2 network. The results indicate that DegradeEval‐Net_v2 substantially improved the performance assessment accuracy of damaged RC shear walls, with a 35% smaller root mean square error (RMSE) for stiffness degradation evaluation and 75% smaller RMSE for strength degradation evaluation, compared with the provisions specified in JBDPA and FEMA guidelines. Moreover, evaluation results on test sets demonstrate that introducing the damage feature extraction and compression layers effectively preserved local crack information and improved the accuracy with which stiffness reduction was evaluated. In addition, DegradeEval‐Net_v2 outperformed ResNet18 and MobileNet V3 in terms of balanced efficiency and accuracy. Interpretability analysis demonstrates that the model learned the distinct contribution patterns of various visible damage indexes to stiffness and strength degradation across different loading levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccc完成签到,获得积分10
1秒前
可爱的函函应助Green采纳,获得10
1秒前
1秒前
2秒前
思源应助Tony7采纳,获得10
2秒前
黄林旋发布了新的文献求助10
2秒前
rendong4009完成签到,获得积分10
3秒前
要减肥煎饼完成签到 ,获得积分10
3秒前
Vincent发布了新的文献求助10
3秒前
3秒前
伯赏松思完成签到,获得积分10
3秒前
afli完成签到 ,获得积分0
3秒前
4秒前
充电宝应助fat采纳,获得10
4秒前
4秒前
顾矜应助66m37采纳,获得10
4秒前
旭宝儿发布了新的文献求助10
5秒前
5秒前
ldgsd完成签到,获得积分10
6秒前
bkagyin应助gansk采纳,获得10
6秒前
6秒前
6秒前
6秒前
HuaYu完成签到,获得积分10
6秒前
6秒前
嗷呜嗷呜完成签到,获得积分10
6秒前
he完成签到,获得积分10
7秒前
岁月轮回完成签到,获得积分10
7秒前
tongluobing完成签到,获得积分10
8秒前
8秒前
9秒前
吐车上500完成签到,获得积分10
10秒前
POWEHI0301完成签到,获得积分10
10秒前
科研通AI2S应助旭宝儿采纳,获得10
10秒前
可爱的函函应助旭宝儿采纳,获得10
10秒前
薰硝壤应助小星星采纳,获得10
10秒前
Tony7完成签到,获得积分10
10秒前
iNk应助Vincent采纳,获得20
12秒前
12秒前
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
宽禁带半导体紫外光电探测器 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143353
求助须知:如何正确求助?哪些是违规求助? 2794636
关于积分的说明 7811842
捐赠科研通 2450801
什么是DOI,文献DOI怎么找? 1304061
科研通“疑难数据库(出版商)”最低求助积分说明 627178
版权声明 601386