Evaluation of strength and stiffness degradation of RC shear walls: An integrated image processing and deep learning approach

降级(电信) 刚度 剪切(地质) 抗剪强度(土壤) 结构工程 图像处理 深度学习 人工智能 材料科学 计算机科学 岩土工程 图像(数学) 复合材料 工程类 地质学 土壤科学 电信 土壤水分
作者
Xiaodong Ji,Yue Yu,Xiang Gao,Yuncheng Zhuang,Shaohui Zhang
出处
期刊:Earthquake Engineering & Structural Dynamics [Wiley]
标识
DOI:10.1002/eqe.4134
摘要

Abstract In the aftermath of an earthquake, damage detection and performance evaluation of structural components are imperative for assessing the residual seismic capacity of a building. In this study, an integrated image processing and deep learning approach was developed to evaluate the degradation in strength and stiffness (i.e., strength reduction and stiffness reduction) of reinforced concrete (RC) shear walls. The approach comprised two main tasks: detecting and localizing visible seismic damage from photographs and evaluating strength and stiffness degradation based on this information. The semantic segmentation network, Damage‐Net, was used for damage detection and localization. A novel crack morphological processing layer and a patch feature extraction layer were developed for damage feature extraction and compression. A lightweight deep convolutional neural network named DegradeEval‐Net_v2, featuring the upgraded dilated and separable convolution block and multi‐layer perception, was developed to link the damage feature with strength and stiffness degradation. A database comprising test data and photographs of 14 RC shear wall specimens with a flexural‐dominated behavior mode and high to intermediate ductility was constructed to train and test the DegradeEval‐Net_v2 network. The results indicate that DegradeEval‐Net_v2 substantially improved the performance assessment accuracy of damaged RC shear walls, with a 35% smaller root mean square error (RMSE) for stiffness degradation evaluation and 75% smaller RMSE for strength degradation evaluation, compared with the provisions specified in JBDPA and FEMA guidelines. Moreover, evaluation results on test sets demonstrate that introducing the damage feature extraction and compression layers effectively preserved local crack information and improved the accuracy with which stiffness reduction was evaluated. In addition, DegradeEval‐Net_v2 outperformed ResNet18 and MobileNet V3 in terms of balanced efficiency and accuracy. Interpretability analysis demonstrates that the model learned the distinct contribution patterns of various visible damage indexes to stiffness and strength degradation across different loading levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz完成签到,获得积分10
1秒前
Owen应助Aom采纳,获得10
2秒前
2秒前
张景琴完成签到,获得积分10
3秒前
4秒前
桐桐应助LI采纳,获得10
4秒前
d.zhang完成签到,获得积分10
4秒前
7秒前
大头老婆完成签到 ,获得积分10
9秒前
9秒前
科目三应助晾猫人采纳,获得10
9秒前
10秒前
斯文听南完成签到,获得积分10
12秒前
12秒前
云风发布了新的文献求助10
14秒前
扬大小汤完成签到 ,获得积分10
14秒前
15秒前
️语完成签到,获得积分10
15秒前
学术射手发布了新的文献求助50
15秒前
健康的犀牛完成签到,获得积分10
17秒前
研友_Z1eDgZ完成签到,获得积分10
18秒前
Done完成签到,获得积分10
18秒前
123发布了新的文献求助10
18秒前
领导范儿应助lamer采纳,获得10
19秒前
晾猫人发布了新的文献求助10
19秒前
20秒前
四月完成签到 ,获得积分10
21秒前
酷波er应助yinyue采纳,获得10
21秒前
ss发布了新的文献求助10
23秒前
23秒前
123完成签到,获得积分10
26秒前
赘婿应助渝安采纳,获得10
26秒前
张子捷应助sarah采纳,获得10
26秒前
27秒前
Sky关注了科研通微信公众号
27秒前
28秒前
29秒前
30秒前
ALONE完成签到,获得积分20
30秒前
曹沛岚完成签到,获得积分10
31秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3082549
求助须知:如何正确求助?哪些是违规求助? 2735847
关于积分的说明 7539036
捐赠科研通 2385432
什么是DOI,文献DOI怎么找? 1264844
科研通“疑难数据库(出版商)”最低求助积分说明 612830
版权声明 597685