Evaluation of strength and stiffness degradation of RC shear walls: An integrated image processing and deep learning approach

刚度 卷积神经网络 结构工程 残余强度 抗弯强度 特征提取 残余物 人工智能 人工神经网络 计算机科学 工程类 算法
作者
Xiaodong Ji,Yue Yu,Xiang Gao,Yuncheng Zhuang,Shaohui Zhang
出处
期刊:Earthquake Engineering & Structural Dynamics [Wiley]
卷期号:53 (9): 2827-2849 被引量:3
标识
DOI:10.1002/eqe.4134
摘要

Abstract In the aftermath of an earthquake, damage detection and performance evaluation of structural components are imperative for assessing the residual seismic capacity of a building. In this study, an integrated image processing and deep learning approach was developed to evaluate the degradation in strength and stiffness (i.e., strength reduction and stiffness reduction) of reinforced concrete (RC) shear walls. The approach comprised two main tasks: detecting and localizing visible seismic damage from photographs and evaluating strength and stiffness degradation based on this information. The semantic segmentation network, Damage‐Net, was used for damage detection and localization. A novel crack morphological processing layer and a patch feature extraction layer were developed for damage feature extraction and compression. A lightweight deep convolutional neural network named DegradeEval‐Net_v2, featuring the upgraded dilated and separable convolution block and multi‐layer perception, was developed to link the damage feature with strength and stiffness degradation. A database comprising test data and photographs of 14 RC shear wall specimens with a flexural‐dominated behavior mode and high to intermediate ductility was constructed to train and test the DegradeEval‐Net_v2 network. The results indicate that DegradeEval‐Net_v2 substantially improved the performance assessment accuracy of damaged RC shear walls, with a 35% smaller root mean square error (RMSE) for stiffness degradation evaluation and 75% smaller RMSE for strength degradation evaluation, compared with the provisions specified in JBDPA and FEMA guidelines. Moreover, evaluation results on test sets demonstrate that introducing the damage feature extraction and compression layers effectively preserved local crack information and improved the accuracy with which stiffness reduction was evaluated. In addition, DegradeEval‐Net_v2 outperformed ResNet18 and MobileNet V3 in terms of balanced efficiency and accuracy. Interpretability analysis demonstrates that the model learned the distinct contribution patterns of various visible damage indexes to stiffness and strength degradation across different loading levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zlu发布了新的文献求助10
1秒前
美丽的又菡完成签到,获得积分10
1秒前
1秒前
1秒前
专注的问寒给zxj的求助进行了留言
1秒前
ding应助白小白采纳,获得10
1秒前
科研通AI6应助轻松囧采纳,获得10
1秒前
2秒前
wanjingwan完成签到 ,获得积分10
2秒前
Lucas应助清颜采纳,获得10
2秒前
2秒前
2秒前
壮壮完成签到,获得积分10
2秒前
吃素的熊猫完成签到,获得积分10
2秒前
丫丫发布了新的文献求助10
3秒前
wuxunxun2015发布了新的文献求助10
3秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
咕哒猫应助科研通管家采纳,获得10
3秒前
wwy应助科研通管家采纳,获得10
3秒前
小小米发布了新的文献求助10
4秒前
三土应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
咕哒猫应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
小青椒应助科研通管家采纳,获得30
4秒前
浮游应助科研通管家采纳,获得10
4秒前
Haoru应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
Akim应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
咕哒猫应助科研通管家采纳,获得10
5秒前
5秒前
大个应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647059
求助须知:如何正确求助?哪些是违规求助? 4772926
关于积分的说明 15037602
捐赠科研通 4805794
什么是DOI,文献DOI怎么找? 2569989
邀请新用户注册赠送积分活动 1526857
关于科研通互助平台的介绍 1485983