Evaluation of strength and stiffness degradation of RC shear walls: An integrated image processing and deep learning approach

刚度 卷积神经网络 结构工程 残余强度 抗弯强度 特征提取 残余物 人工智能 人工神经网络 计算机科学 工程类 算法
作者
Xiaodong Ji,Yue Yu,Xiang Gao,Yuncheng Zhuang,Shaohui Zhang
出处
期刊:Earthquake Engineering & Structural Dynamics [Wiley]
卷期号:53 (9): 2827-2849
标识
DOI:10.1002/eqe.4134
摘要

Abstract In the aftermath of an earthquake, damage detection and performance evaluation of structural components are imperative for assessing the residual seismic capacity of a building. In this study, an integrated image processing and deep learning approach was developed to evaluate the degradation in strength and stiffness (i.e., strength reduction and stiffness reduction) of reinforced concrete (RC) shear walls. The approach comprised two main tasks: detecting and localizing visible seismic damage from photographs and evaluating strength and stiffness degradation based on this information. The semantic segmentation network, Damage‐Net, was used for damage detection and localization. A novel crack morphological processing layer and a patch feature extraction layer were developed for damage feature extraction and compression. A lightweight deep convolutional neural network named DegradeEval‐Net_v2, featuring the upgraded dilated and separable convolution block and multi‐layer perception, was developed to link the damage feature with strength and stiffness degradation. A database comprising test data and photographs of 14 RC shear wall specimens with a flexural‐dominated behavior mode and high to intermediate ductility was constructed to train and test the DegradeEval‐Net_v2 network. The results indicate that DegradeEval‐Net_v2 substantially improved the performance assessment accuracy of damaged RC shear walls, with a 35% smaller root mean square error (RMSE) for stiffness degradation evaluation and 75% smaller RMSE for strength degradation evaluation, compared with the provisions specified in JBDPA and FEMA guidelines. Moreover, evaluation results on test sets demonstrate that introducing the damage feature extraction and compression layers effectively preserved local crack information and improved the accuracy with which stiffness reduction was evaluated. In addition, DegradeEval‐Net_v2 outperformed ResNet18 and MobileNet V3 in terms of balanced efficiency and accuracy. Interpretability analysis demonstrates that the model learned the distinct contribution patterns of various visible damage indexes to stiffness and strength degradation across different loading levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
void科学家完成签到,获得积分10
刚刚
刚刚
布鲁爱思发布了新的文献求助10
刚刚
1秒前
于思枫完成签到,获得积分10
2秒前
八段锦完成签到 ,获得积分10
2秒前
酷波er应助偷书贼采纳,获得10
3秒前
DYW发布了新的文献求助10
4秒前
皇家搓澡师完成签到,获得积分10
4秒前
完美世界应助当年明月采纳,获得10
4秒前
李li完成签到,获得积分20
5秒前
实验室同学完成签到,获得积分10
6秒前
Yliang发布了新的文献求助10
7秒前
8秒前
三寒鸦完成签到,获得积分10
8秒前
准SCI发表者完成签到,获得积分20
10秒前
10秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
研友_RLNzvL完成签到,获得积分10
13秒前
充电宝应助xyf采纳,获得10
13秒前
14秒前
gyj1发布了新的文献求助10
14秒前
凑个数完成签到 ,获得积分10
15秒前
韦巧发布了新的文献求助10
15秒前
666完成签到 ,获得积分10
17秒前
nimama完成签到,获得积分20
17秒前
偷书贼发布了新的文献求助10
17秒前
pluto应助华华采纳,获得10
17秒前
CCR发布了新的文献求助10
18秒前
ohh完成签到,获得积分10
18秒前
欢歌笑语完成签到,获得积分10
18秒前
YJL完成签到 ,获得积分10
18秒前
19秒前
20秒前
Yliang完成签到 ,获得积分10
20秒前
mm_zxh驳回了田様应助
21秒前
完美世界应助青稞的酒采纳,获得10
21秒前
22秒前
22秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961001
求助须知:如何正确求助?哪些是违规求助? 3507225
关于积分的说明 11134609
捐赠科研通 3239650
什么是DOI,文献DOI怎么找? 1790276
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150