Incorporation of nanoparticles in silk fibroin solution: Toward water‐stable silk fibroin films possessing silk I structure

丝素 丝绸 材料科学 傅里叶变换红外光谱 化学工程 纳米颗粒 无定形固体 极限抗拉强度 复合材料 纳米技术 有机化学 化学 工程类
作者
Zeeshan Tariq,Ziqing Zhu,Muhammad Husnain Tariq,Yongfeng Wang,Yuling Li,Abdul Moqeet Hai,Asfandyar Khan,Xiaoqin Wang
出处
期刊:Polymers for Advanced Technologies [Wiley]
卷期号:35 (4) 被引量:1
标识
DOI:10.1002/pat.6392
摘要

Abstract Water‐stable silk fibroin (SF) films are normally prepared by transforming the secondary structure of SF, from amorphous silk I (random coils) to silk II (β‐sheet), via physical or chemical means. Although mechanically strong, these films are generally brittle. Herein, we prepared water‐stable flexible SF films possessing silk I rather than silk II structure. Films were prepared by casting SF solution possessing SF nanoparticles induced by two different methods: (1) pre‐prepared SF nanoparticles by ethanol were added into SF solution; (2) nanoparticles were induced in SF solution via autoclaving. These films were compared with each other and with water‐annealed and methonol‐annealed films for their secondary structure and physical properties. The as‐prepared films were primarily composed of silk I structure, as validated by x‐ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. However, the water‐annealed and methanol‐annealed films exhibited silk II structure. The films prepared by induction of nanoparticles were water‐stable, transparent, mechanically strong (tensile strength as high as 5.14 ± 1.43 MPa), exhibited tunable degradation and sustained drug release properties. As for mechanical properties, these films displayed 4 times and 12 times improved mechanical ductility as compared with water‐annealed and methanol‐annealed films, respectively. Moreover, these films exhibited fast enzymatic degradation as compared with their counterparts with silk II structure. These films hold great promise as a biomaterial for tissue engineering applications especially where flexibility and fast degradation of scaffold are important.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CHEM_XIE完成签到,获得积分10
刚刚
刚刚
YW发布了新的文献求助10
刚刚
shanshan完成签到,获得积分20
1秒前
洁净雅容完成签到,获得积分10
1秒前
1秒前
科研小哥完成签到,获得积分10
3秒前
感动冰枫完成签到,获得积分10
3秒前
土归土完成签到,获得积分10
4秒前
4秒前
4秒前
天真香烟完成签到,获得积分10
4秒前
5秒前
杰小瑞完成签到,获得积分10
6秒前
MandyZZZ发布了新的文献求助200
6秒前
共享精神应助润泽无语采纳,获得10
7秒前
masonzhang发布了新的文献求助10
7秒前
番茄酱发布了新的文献求助10
9秒前
9秒前
pan完成签到,获得积分10
9秒前
感动冰枫发布了新的文献求助10
10秒前
10秒前
代纤绮完成签到,获得积分10
11秒前
11秒前
panda发布了新的文献求助20
12秒前
危机的寒烟完成签到,获得积分10
12秒前
丘比特应助斯文谷秋采纳,获得10
14秒前
番茄酱完成签到,获得积分10
15秒前
M3L2发布了新的文献求助10
15秒前
大个应助科研通管家采纳,获得10
16秒前
sunshine应助科研通管家采纳,获得10
16秒前
至夏应助科研通管家采纳,获得10
16秒前
Ava应助无奈的萝采纳,获得10
16秒前
我是老大应助科研通管家采纳,获得10
16秒前
子车茗应助科研通管家采纳,获得30
16秒前
方羽应助科研通管家采纳,获得10
16秒前
sunshine应助科研通管家采纳,获得10
16秒前
子车茗应助科研通管家采纳,获得30
17秒前
sunshine应助科研通管家采纳,获得10
17秒前
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
RNAの科学 ―時代を拓く生体分子― 金井 昭夫(編) 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353761
求助须知:如何正确求助?哪些是违规求助? 2978264
关于积分的说明 8684846
捐赠科研通 2659776
什么是DOI,文献DOI怎么找? 1456340
科研通“疑难数据库(出版商)”最低求助积分说明 674342
邀请新用户注册赠送积分活动 665110