无人机
马尔可夫决策过程
卡车
运筹学
车辆路径问题
计算机科学
服务(商务)
布线(电子设计自动化)
过程(计算)
马尔可夫链
部分可观测马尔可夫决策过程
实时计算
操作员(生物学)
马尔可夫过程
模拟
马尔可夫模型
工程类
计算机网络
业务
数学
营销
汽车工程
遗传学
生物
抑制因子
化学
操作系统
生物化学
机器学习
转录因子
统计
基因
作者
Juan C. Pina-Pardo,Daniel F. Silva,Alice E. Smith,Ricardo A. Gatica
标识
DOI:10.1016/j.trc.2024.104611
摘要
We study a same-day delivery problem where customer orders arrive dynamically throughout the day and the service operator must determine, in real-time, whether to accept the orders and how to adjust the ongoing distribution plan. We develop a route-based Markov Decision Process and an efficient online policy to dynamically route a truck that can receive newly arrived orders along its route via drones dispatched from a depot. Numerical experiments show that our online policy has an average fill rate decrease of at most 20% over the perfect-information counterpart. Further, this online policy has a fill rate increase of up to 8% over a naïve greedy policy. We also show that drone resupply increases fill rates by up to 21% compared to a conventional truck-only resupply system. Computational times to make each decision are in the hundredths of a second, thus allowing real-time feedback to customers regarding their eligibility for same-day delivery.
科研通智能强力驱动
Strongly Powered by AbleSci AI