亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Are students ready for robots in higher education? Examining the adoption of robots by integrating UTAUT2 and TTF using a hybrid SEM-ANN approach

机器人 心理学 计算机科学 知识管理 人工智能
作者
Faisal Suhail,Mouhand Adel,Mostafa Al-Emran,Adi Ahmad AlQudah
出处
期刊:Technology in Society [Elsevier]
卷期号:77: 102524-102524 被引量:2
标识
DOI:10.1016/j.techsoc.2024.102524
摘要

Robots have been heavily utilized in many industries, including education. However, the determinants driving robot adoption for educational purposes, particularly in developing countries, are not yet well understood. Additionally, the existing literature does not examine the fitness between robot capabilities and education-related tasks. Therefore, this research integrates the extended unified theory of acceptance and use of technology (UTAUT2) and task-technology fit (TTF) to examine robot adoption in higher education. Based on 177 responses collected from university students, the proposed model is verified using a hybrid structural equation modeling and artificial neural network (SEM-ANN) approach. The findings indicated that effort expectancy is positively affected by individual technology fit and task technology fit. Further, performance expectancy is significantly driven by task technology fit, but not individual technology fit. The results also supported the role of performance expectancy, social influence, facilitating conditions, and hedonic motivation in affecting behavioral intention, with a variance of 65% in the latter. With a normalized value of 94.5%, the ANN results revealed that social influence is the most important factor affecting robot adoption. These empirical findings provide several theoretical contributions and will help higher education institutions to promote students' adoption of robots while enhancing their practical value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
一介尘埃完成签到 ,获得积分10
3秒前
4秒前
8秒前
8秒前
tuanheqi应助暮雪残梅采纳,获得50
8秒前
9秒前
Orange应助HappyDog采纳,获得10
12秒前
畅快访蕊发布了新的文献求助10
13秒前
14秒前
Jasper应助LPH01采纳,获得30
20秒前
金钰贝儿完成签到,获得积分10
21秒前
22秒前
26秒前
27秒前
27秒前
WW发布了新的文献求助30
28秒前
30秒前
31秒前
lily88发布了新的文献求助10
35秒前
36秒前
38秒前
LPH01发布了新的文献求助30
41秒前
上官若男应助kaki采纳,获得10
43秒前
。。。完成签到,获得积分10
46秒前
hyx发布了新的文献求助30
56秒前
Limpidly应助丁点采纳,获得10
58秒前
Lucas应助Ahha采纳,获得10
1分钟前
风趣的茹嫣完成签到 ,获得积分10
1分钟前
eccentric发布了新的文献求助10
1分钟前
1分钟前
PC7BCky完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
Nicole完成签到 ,获得积分10
1分钟前
hyx驳回了大模型应助
1分钟前
我是老大应助eccentric采纳,获得10
1分钟前
WW完成签到,获得积分10
1分钟前
1分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
麻省总医院内科手册(原著第8版) (美)马克S.萨巴蒂尼 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142628
求助须知:如何正确求助?哪些是违规求助? 2793538
关于积分的说明 7806782
捐赠科研通 2449789
什么是DOI,文献DOI怎么找? 1303425
科研通“疑难数据库(出版商)”最低求助积分说明 626871
版权声明 601314