CT-based intratumoral and peritumoral deep transfer learning features prediction of lymph node metastasis in non-small cell lung cancer

医学 淋巴结 肺癌 列线图 逻辑回归 支持向量机 淋巴 无线电技术 转移 淋巴结转移 队列 肿瘤科 放射科 人工智能 癌症 病理 内科学 计算机科学
作者
Tianyu Lu,Jianbing Ma,Jiajun Zou,Chenxu Jiang,Yangyang Li,Jun Han
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:32 (3): 597-609
标识
DOI:10.3233/xst-230326
摘要

BACKGROUND: The main metastatic route for lung cancer is lymph node metastasis, and studies have shown that non-small cell lung cancer (NSCLC) has a high risk of lymph node infiltration. OBJECTIVE: This study aimed to compare the performance of handcrafted radiomics (HR) features and deep transfer learning (DTL) features in Computed Tomography (CT) of intratumoral and peritumoral regions in predicting the metastatic status of NSCLC lymph nodes in different machine learning classifier models. METHODS: We retrospectively collected data of 199 patients with pathologically confirmed NSCLC. All patients were divided into training (n = 159) and validation (n = 40) cohorts, respectively. The best HR and DTL features in the intratumoral and peritumoral regions were extracted and selected, respectively. Support Vector Machine (SVM), k-Nearest Neighbors (KNN), Light Gradient Boosting Machine (Light GBM), Multilayer Perceptron (MLP), and Logistic Regression (LR) models were constructed, and the performance of the models was evaluated. RESULTS: Among the five models in the training and validation cohorts, the LR classifier model performed best in terms of HR and DTL features. The AUCs of the training cohort were 0.841 (95% CI: 0.776–0.907) and 0.955 (95% CI: 0.926–0.983), and the AUCs of the validation cohort were 0.812 (95% CI: 0.677–0.948) and 0.893 (95% CI: 0.795–0.991), respectively. The DTL signature was superior to the handcrafted radiomics signature. CONCLUSIONS: Compared with the radiomics signature, the DTL signature constructed based on intratumoral and peritumoral areas in CT can better predict NSCLC lymph node metastasis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
buno应助jy采纳,获得10
2秒前
paparazzi221发布了新的文献求助10
3秒前
田生完成签到,获得积分10
3秒前
勤劳的忆寒应助Kiyotaka采纳,获得30
3秒前
3秒前
爆米花应助towerman采纳,获得10
4秒前
羊笨笨完成签到 ,获得积分10
4秒前
5秒前
光亮芷天完成签到,获得积分10
5秒前
5秒前
6秒前
粗犷的问夏完成签到,获得积分10
7秒前
知行合一完成签到 ,获得积分10
8秒前
8秒前
9秒前
李爱国应助晨曦采纳,获得10
10秒前
0128lun发布了新的文献求助10
10秒前
phd发布了新的文献求助10
11秒前
君无名完成签到 ,获得积分10
11秒前
经年发布了新的文献求助10
11秒前
QXR完成签到,获得积分10
12秒前
豆dou完成签到,获得积分10
12秒前
Dddd发布了新的文献求助10
12秒前
HCl完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
15秒前
15秒前
Hollen完成签到 ,获得积分10
16秒前
慕青应助学术蠕虫采纳,获得10
17秒前
17秒前
叶子发布了新的文献求助10
18秒前
orangel完成签到,获得积分10
19秒前
半壶月色半边天完成签到 ,获得积分10
20秒前
tmpstlml发布了新的文献求助10
20秒前
21秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808