CT-based intratumoral and peritumoral deep transfer learning features prediction of lymph node metastasis in non-small cell lung cancer

医学 淋巴结 肺癌 列线图 逻辑回归 支持向量机 淋巴 无线电技术 转移 淋巴结转移 队列 肿瘤科 放射科 人工智能 癌症 病理 内科学 计算机科学
作者
Tianyu Lu,Jianbing Ma,Jiajun Zou,Chenxu Jiang,Yangyang Li,Jun Han
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:32 (3): 597-609
标识
DOI:10.3233/xst-230326
摘要

BACKGROUND: The main metastatic route for lung cancer is lymph node metastasis, and studies have shown that non-small cell lung cancer (NSCLC) has a high risk of lymph node infiltration. OBJECTIVE: This study aimed to compare the performance of handcrafted radiomics (HR) features and deep transfer learning (DTL) features in Computed Tomography (CT) of intratumoral and peritumoral regions in predicting the metastatic status of NSCLC lymph nodes in different machine learning classifier models. METHODS: We retrospectively collected data of 199 patients with pathologically confirmed NSCLC. All patients were divided into training (n = 159) and validation (n = 40) cohorts, respectively. The best HR and DTL features in the intratumoral and peritumoral regions were extracted and selected, respectively. Support Vector Machine (SVM), k-Nearest Neighbors (KNN), Light Gradient Boosting Machine (Light GBM), Multilayer Perceptron (MLP), and Logistic Regression (LR) models were constructed, and the performance of the models was evaluated. RESULTS: Among the five models in the training and validation cohorts, the LR classifier model performed best in terms of HR and DTL features. The AUCs of the training cohort were 0.841 (95% CI: 0.776–0.907) and 0.955 (95% CI: 0.926–0.983), and the AUCs of the validation cohort were 0.812 (95% CI: 0.677–0.948) and 0.893 (95% CI: 0.795–0.991), respectively. The DTL signature was superior to the handcrafted radiomics signature. CONCLUSIONS: Compared with the radiomics signature, the DTL signature constructed based on intratumoral and peritumoral areas in CT can better predict NSCLC lymph node metastasis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助hhhh采纳,获得10
刚刚
lulu828完成签到,获得积分10
刚刚
ukpkmkk完成签到,获得积分10
1秒前
2秒前
Little2发布了新的文献求助10
3秒前
3秒前
Jackson_Cai发布了新的文献求助10
3秒前
3秒前
充电宝应助清新的苑博采纳,获得10
4秒前
李爱国应助lpp采纳,获得10
4秒前
kilo完成签到 ,获得积分10
4秒前
顾矜应助XiangQin采纳,获得10
4秒前
4秒前
故里发布了新的文献求助10
5秒前
JamesPei应助6666采纳,获得10
5秒前
wanci应助hc采纳,获得10
5秒前
木木完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
bkagyin应助Yanyes采纳,获得10
6秒前
momo19完成签到,获得积分10
7秒前
Eason完成签到 ,获得积分20
7秒前
ddd关闭了ddd文献求助
7秒前
7秒前
8秒前
JJJ发布了新的文献求助10
8秒前
落寞依玉发布了新的文献求助10
8秒前
8秒前
9秒前
李志强发布了新的文献求助10
9秒前
9秒前
abc97完成签到,获得积分10
10秒前
pepsisery完成签到,获得积分10
11秒前
11秒前
六月完成签到,获得积分10
11秒前
11秒前
传奇3应助陌路孤星采纳,获得10
11秒前
11秒前
12秒前
飞跃炼丹炉的沐沐完成签到,获得积分10
12秒前
Juni完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435804
求助须知:如何正确求助?哪些是违规求助? 4548006
关于积分的说明 14211638
捐赠科研通 4468203
什么是DOI,文献DOI怎么找? 2448968
邀请新用户注册赠送积分活动 1439889
关于科研通互助平台的介绍 1416503