亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CT-based intratumoral and peritumoral deep transfer learning features prediction of lymph node metastasis in non-small cell lung cancer

医学 淋巴结 肺癌 列线图 逻辑回归 支持向量机 淋巴 无线电技术 转移 淋巴结转移 队列 肿瘤科 放射科 人工智能 癌症 病理 内科学 计算机科学
作者
Tianyu Lu,Jianbing Ma,Jiajun Zou,Chenxu Jiang,Yangyang Li,Jun Han
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:32 (3): 597-609
标识
DOI:10.3233/xst-230326
摘要

BACKGROUND: The main metastatic route for lung cancer is lymph node metastasis, and studies have shown that non-small cell lung cancer (NSCLC) has a high risk of lymph node infiltration. OBJECTIVE: This study aimed to compare the performance of handcrafted radiomics (HR) features and deep transfer learning (DTL) features in Computed Tomography (CT) of intratumoral and peritumoral regions in predicting the metastatic status of NSCLC lymph nodes in different machine learning classifier models. METHODS: We retrospectively collected data of 199 patients with pathologically confirmed NSCLC. All patients were divided into training (n = 159) and validation (n = 40) cohorts, respectively. The best HR and DTL features in the intratumoral and peritumoral regions were extracted and selected, respectively. Support Vector Machine (SVM), k-Nearest Neighbors (KNN), Light Gradient Boosting Machine (Light GBM), Multilayer Perceptron (MLP), and Logistic Regression (LR) models were constructed, and the performance of the models was evaluated. RESULTS: Among the five models in the training and validation cohorts, the LR classifier model performed best in terms of HR and DTL features. The AUCs of the training cohort were 0.841 (95% CI: 0.776–0.907) and 0.955 (95% CI: 0.926–0.983), and the AUCs of the validation cohort were 0.812 (95% CI: 0.677–0.948) and 0.893 (95% CI: 0.795–0.991), respectively. The DTL signature was superior to the handcrafted radiomics signature. CONCLUSIONS: Compared with the radiomics signature, the DTL signature constructed based on intratumoral and peritumoral areas in CT can better predict NSCLC lymph node metastasis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助畅快的毛衣采纳,获得10
8秒前
17秒前
19秒前
鲅鱼圈发布了新的文献求助10
22秒前
22秒前
Leofar完成签到 ,获得积分10
29秒前
30秒前
鲅鱼圈完成签到,获得积分10
34秒前
h0jian09完成签到,获得积分10
50秒前
BaooooooMao完成签到,获得积分10
1分钟前
愉快的犀牛完成签到 ,获得积分10
1分钟前
Sunny完成签到,获得积分10
1分钟前
yujie完成签到 ,获得积分10
1分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
2分钟前
西柚柠檬完成签到 ,获得积分10
2分钟前
心系天下完成签到 ,获得积分10
2分钟前
Alex-Song完成签到 ,获得积分0
2分钟前
不秃燃的小老弟完成签到 ,获得积分10
3分钟前
4分钟前
Owen应助科研通管家采纳,获得10
4分钟前
年年有余完成签到,获得积分10
4分钟前
胖小羊完成签到 ,获得积分10
5分钟前
6分钟前
领导范儿应助科研通管家采纳,获得10
6分钟前
6分钟前
juan完成签到 ,获得积分10
7分钟前
学术小垃圾完成签到,获得积分10
7分钟前
叁月二完成签到 ,获得积分10
7分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
大模型应助科研通管家采纳,获得10
8分钟前
xingsixs完成签到 ,获得积分10
8分钟前
AprilLeung完成签到 ,获得积分10
9分钟前
10分钟前
深情安青应助科研通管家采纳,获得10
10分钟前
迷茫的一代完成签到,获得积分10
11分钟前
魔笛的云宝完成签到 ,获得积分10
11分钟前
www完成签到,获得积分10
11分钟前
12分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990423
求助须知:如何正确求助?哪些是违规求助? 3532158
关于积分的说明 11256513
捐赠科研通 3271046
什么是DOI,文献DOI怎么找? 1805207
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234