已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CT-based intratumoral and peritumoral deep transfer learning features prediction of lymph node metastasis in non-small cell lung cancer

医学 淋巴结 肺癌 列线图 逻辑回归 支持向量机 淋巴 无线电技术 转移 淋巴结转移 队列 肿瘤科 放射科 人工智能 癌症 病理 内科学 计算机科学
作者
Tianyu Lu,Jianbing Ma,Jiajun Zou,Chenxu Jiang,Yangyang Li,Jun Han
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:32 (3): 597-609
标识
DOI:10.3233/xst-230326
摘要

BACKGROUND: The main metastatic route for lung cancer is lymph node metastasis, and studies have shown that non-small cell lung cancer (NSCLC) has a high risk of lymph node infiltration. OBJECTIVE: This study aimed to compare the performance of handcrafted radiomics (HR) features and deep transfer learning (DTL) features in Computed Tomography (CT) of intratumoral and peritumoral regions in predicting the metastatic status of NSCLC lymph nodes in different machine learning classifier models. METHODS: We retrospectively collected data of 199 patients with pathologically confirmed NSCLC. All patients were divided into training (n = 159) and validation (n = 40) cohorts, respectively. The best HR and DTL features in the intratumoral and peritumoral regions were extracted and selected, respectively. Support Vector Machine (SVM), k-Nearest Neighbors (KNN), Light Gradient Boosting Machine (Light GBM), Multilayer Perceptron (MLP), and Logistic Regression (LR) models were constructed, and the performance of the models was evaluated. RESULTS: Among the five models in the training and validation cohorts, the LR classifier model performed best in terms of HR and DTL features. The AUCs of the training cohort were 0.841 (95% CI: 0.776–0.907) and 0.955 (95% CI: 0.926–0.983), and the AUCs of the validation cohort were 0.812 (95% CI: 0.677–0.948) and 0.893 (95% CI: 0.795–0.991), respectively. The DTL signature was superior to the handcrafted radiomics signature. CONCLUSIONS: Compared with the radiomics signature, the DTL signature constructed based on intratumoral and peritumoral areas in CT can better predict NSCLC lymph node metastasis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西瓜完成签到,获得积分10
刚刚
2秒前
ciciyu发布了新的文献求助10
3秒前
田様应助厚芋泥采纳,获得10
3秒前
Criminology34应助盖福鹤采纳,获得10
5秒前
6秒前
7秒前
顾矜应助忧郁凌波采纳,获得10
8秒前
缓慢千易完成签到,获得积分10
9秒前
bubble发布了新的文献求助10
9秒前
可爱的函函应助花三万俩采纳,获得10
10秒前
Ldmlly发布了新的文献求助10
11秒前
12秒前
14秒前
予你完成签到 ,获得积分10
15秒前
16秒前
CSS完成签到,获得积分10
17秒前
17秒前
慕青应助肖敏采纳,获得10
18秒前
18秒前
19秒前
Criminology34应助盖福鹤采纳,获得10
20秒前
忧郁凌波发布了新的文献求助10
21秒前
研友_VZG7GZ应助科研通管家采纳,获得10
21秒前
赘婿应助科研通管家采纳,获得10
21秒前
null应助科研通管家采纳,获得10
21秒前
21秒前
null应助科研通管家采纳,获得10
22秒前
null应助科研通管家采纳,获得10
22秒前
脑洞疼应助科研通管家采纳,获得10
22秒前
Akim应助科研通管家采纳,获得10
22秒前
shhoing应助科研通管家采纳,获得10
22秒前
小二郎应助科研通管家采纳,获得10
22秒前
Jasper应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
null应助科研通管家采纳,获得10
22秒前
NexusExplorer应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得20
22秒前
null应助科研通管家采纳,获得10
23秒前
orixero应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538198
求助须知:如何正确求助?哪些是违规求助? 4625382
关于积分的说明 14595848
捐赠科研通 4565994
什么是DOI,文献DOI怎么找? 2502838
邀请新用户注册赠送积分活动 1481193
关于科研通互助平台的介绍 1452435