On cone-based decompositions of proper Pareto-optimality in multi-objective optimization

帕累托原理 数学优化 多目标优化 集合(抽象数据类型) 补语(音乐) 数学 趋同(经济学) 光学(聚焦) 空格(标点符号) 最优化问题 计算机科学 操作系统 生物化学 经济增长 程序设计语言 基因 表型 光学 经济 互补 物理 化学
作者
Marlon Braun,Pradyumn Kumar Shukla
出处
期刊:European Journal of Operational Research [Elsevier]
卷期号:317 (2): 592-602
标识
DOI:10.1016/j.ejor.2024.04.019
摘要

In recent years, research focus in multi-objective optimization has shifted from approximating the Pareto optimal front in its entirety to identifying solutions that are well-balanced among their objectives. Proper Pareto optimality is an established concept for eliminating Pareto optimal solutions that exhibit unbounded tradeoffs. Imposing a strict tradeoff bound in a classical definition of proper Pareto optimality allows specifying how many units of one objective one is willing to trade in for obtaining one unit of another objective. Recent studies have shown that this notion shows favorable convergence properties. One of the aims of this paper is to translate the proper Pareto optimality notion to an ordering relation, which we denote by M-domination. The mathematical properties of M-domination are thoroughly analyzed in this paper yielding key insights into its applicability as decision making aid and in designing population-based algorithms for solving multi-objective optimization problems. We complement our work by providing four different geometrical descriptions of the M-dominated space given by a union of polyhedral cones. A geometrical description does not only yield a greater understanding of the underlying tradeoff concept, but also allows a quantification of the hypervolume dominated by a particular solution or an entire set of solutions. These descriptions shall enable researchers to formulate hypervolume-based approaches for finding approximations of the Pareto front that emphasize regions that are well-balanced among their tradeoffs in subsequent works.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千寒完成签到,获得积分10
刚刚
积极的尔岚完成签到,获得积分10
刚刚
Estrella应助yy采纳,获得10
1秒前
暮茵完成签到 ,获得积分10
2秒前
烂漫的蜡烛完成签到 ,获得积分10
4秒前
啦啦啦完成签到 ,获得积分10
4秒前
Archy完成签到,获得积分10
6秒前
6秒前
7秒前
marryzhou完成签到 ,获得积分10
7秒前
JamesPei应助冯丽雪采纳,获得10
8秒前
深情安青应助木光采纳,获得10
8秒前
泛泛之交完成签到,获得积分10
8秒前
yufanhui应助坚强的笑天采纳,获得10
9秒前
nancyzhao完成签到 ,获得积分10
11秒前
yyxhahaha完成签到 ,获得积分10
12秒前
哈哈哈完成签到 ,获得积分10
14秒前
冯丽雪完成签到,获得积分10
15秒前
文静的紫萱完成签到,获得积分10
15秒前
Lin完成签到,获得积分10
17秒前
lang完成签到,获得积分10
18秒前
爱学习完成签到,获得积分10
18秒前
霓裳舞完成签到,获得积分10
19秒前
明理的从波完成签到,获得积分10
23秒前
hs完成签到,获得积分10
24秒前
SolderOH完成签到,获得积分10
25秒前
26秒前
科研通AI2S应助明理的从波采纳,获得30
28秒前
28秒前
杜子哥发布了新的文献求助10
30秒前
yufanhui应助坚强的笑天采纳,获得10
30秒前
妮露的修狗完成签到,获得积分10
32秒前
33秒前
33秒前
Wenpandaen应助星辰采纳,获得10
34秒前
sweater关注了科研通微信公众号
35秒前
37秒前
39秒前
小甜水完成签到,获得积分10
40秒前
Ray完成签到 ,获得积分10
40秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139810
求助须知:如何正确求助?哪些是违规求助? 2790682
关于积分的说明 7796255
捐赠科研通 2447121
什么是DOI,文献DOI怎么找? 1301574
科研通“疑难数据库(出版商)”最低求助积分说明 626305
版权声明 601176