A Distributionally Robust Model Predictive Control for Static and Dynamic Uncertainties in Smart Grids

模型预测控制 计算机科学 智能电网 控制(管理) 数学优化 控制理论(社会学) 工程类 数学 人工智能 电气工程
作者
Qi Li,Ye Shi,Yuning Jiang,Yuanming Shi,Haoyu Wang,H. Vincent Poor
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:15 (5): 4890-4902 被引量:1
标识
DOI:10.1109/tsg.2024.3383396
摘要

The integration of various power sources, including renewables and electric vehicles, into smart grids is expanding, introducing uncertainties that can result in issues like voltage imbalances, load fluctuations, and power losses. These challenges negatively impact the reliability and stability of online scheduling in smart grids. Existing research often addresses uncertainties affecting current states but overlooks those that impact future states, such as the unpredictable charging patterns of electric vehicles. To distinguish between these, we term them static uncertainties and dynamic uncertainties, respectively. This paper introduces WDR-MPC, a novel approach that stands for two-stage Wasserstein-based Distributionally Robust (WDR) optimization within a Model Predictive Control (MPC) framework, aimed at effectively managing both types of uncertainties in smart grids. The dynamic uncertainties are first reformulated into ambiguity tubes and then the distributionally robust bounds of both dynamic and static uncertainties can be established using WDR optimization. By employing ambiguity tubes and WDR optimization, the stochastic MPC system is converted into a nominal one. Moreover, we develop a convex reformulation method to speed up WDR computation during the two-stage optimization. The distinctive contribution of this paper lies in its holistic approach to both static and dynamic uncertainties in smart grids. Comprehensive experiment results on IEEE 38-bus and 94-bus systems reveal the method's superior performance and the potential to enhance grid stability and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mysci完成签到,获得积分10
3秒前
4秒前
Quzhengkai发布了新的文献求助10
5秒前
5秒前
6秒前
落寞晓灵完成签到,获得积分10
6秒前
ORAzzz应助翠翠采纳,获得20
7秒前
zoe完成签到,获得积分10
7秒前
习习应助学术小白采纳,获得10
7秒前
8秒前
9秒前
tianny关注了科研通微信公众号
10秒前
10秒前
CO2发布了新的文献求助10
10秒前
桐桐应助zhangscience采纳,获得10
11秒前
求助发布了新的文献求助10
12秒前
buno应助zoe采纳,获得10
13秒前
junzilan发布了新的文献求助10
13秒前
13秒前
细品岁月完成签到 ,获得积分10
13秒前
细心书蕾完成签到 ,获得积分10
14秒前
无花果应助l11x29采纳,获得10
16秒前
16秒前
老詹头发布了新的文献求助10
16秒前
思源应助叫滚滚采纳,获得10
17秒前
18秒前
刘歌完成签到 ,获得积分10
18秒前
阿巡完成签到,获得积分10
18秒前
Chen完成签到,获得积分10
20秒前
LSH970829发布了新的文献求助10
20秒前
哈哈哈完成签到 ,获得积分10
21秒前
汤姆完成签到,获得积分10
21秒前
23秒前
23秒前
翠翠完成签到,获得积分10
24秒前
24秒前
LSH970829完成签到,获得积分10
25秒前
Lyg完成签到,获得积分20
26秒前
坚强的樱发布了新的文献求助10
26秒前
baodingning完成签到,获得积分10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808